Двигатель внутреннего сгорания используется в: Двигатель внутреннего сгорания

Содержание

Двигатель внутреннего сгорания

Определение 1

Двигатель внутреннего сгорания — двигатель, в котором топливо сгорает непосредственно в рабочей камере двигателя.

Первый двигатель внутреннего сгорания (коммерчески успешный) был создан Этьеном Ленуар около $1859$ г. и первый современный двигатель внутреннего сгорания был создан в $1876$ году Николаусом Отто.

Двигатели внутреннего сгорания чаще всего используются для приведения в движение транспортных средств — (автомобилей, мотоциклов, судов, локомотивов, самолетов) и других мобильных машин.

Применение

Поршневые двигатели являются на сегодняшний день наиболее распространенным источником питания для наземных и водных транспортных средств, в том числе автомобилей, мотоциклов, кораблей и в меньшей степени, локомотивов (некоторые из них электрические, но большинство используют дизельные двигатели). Роторные двигатели конструкции Ванкеля используются в некоторых автомобилях, самолетах и мотоциклах.

Там, где требуются очень высокие соотношения мощности к весу, двигатели внутреннего сгорания используются в виде турбин внутреннего сгорания или двигателей Ванкеля.

Классификация

Есть несколько возможных способов классификации двигателей внутреннего сгорания.

Поршневые:

По количеству ударов

  • Двухтактный двигатель;
  • Четырехтактный двигатель (с циклом Отто)
  • Шеститактный двигатель

По типу розжига

  • Двигатель с воспламенением от сжатия;
  • Двигатель с искровым зажиганием (обычно встречаются в бензиновых двигателях)

Роторные:

Следующие типы реактивных двигателей также типы газовых турбин:

  • турбореактивный
  • турбовентиляторный
  • турбовинтовой

Запуск (стартер)

Стартер является электродвигателем, пневматическим двигателем, гидравлическим двигателем, двигателем внутреннего сгорания, используемый для вращения двигателя внутреннего сгорания таким образом, чтобы инициировать работу двигателя под его собственной силой.

Двигатели внутреннего сгорания должны иметь циклы, с которых начинается запуск. В поршневых двигателях это достигается путем поворота коленчатого вала, который запускает циклы пуска, сжатия, сгорания и выхлопа.

Замечание 1

Наиболее часто встречающиеся способы запуска ДВС сегодня это с помощью электрического двигателя.

Другой способ запуска является использование сжатого воздуха, который прокачивают в некоторых цилиндрах двигателя, для того, чтобы запустить его.

Турбинные двигатели часто запускаются с помощью электромотора.

Загрязнение воздуха

Двигатели внутреннего сгорания, такие как поршневые двигатели внутреннего сгорания, производят выбросы в воздух, из-за неполного сгорания углеродистого топлива. Основные производные процесса являются диоксид углерода СО2, вода и сажа – ее также называют твердой частицей. Следствия от вдыхания частиц были изучены в организме человека и животных, и включают в себя астму, рак легких, сердечно — сосудистые проблемы, и преждевременную смерть. Есть, однако, некоторые дополнительные продукты процесса горения, которые включают оксиды азота и серы, а также некоторые несгоревшие углеводороды, которые зависят от условий эксплуатации.

Не все топливо полностью израсходуется в процессе сгорания. Небольшое количество топлива, присутствует после сгорания, а некоторое вступает в реакцию с образованием кислородсодержащих соединений, таких как формальдегид или ацетальдегид. Неполное сгорание обычно возникает в результате недостатка кислорода для достижения идеального стехиометрического соотношения.

Угольное топливо содержит серу и примесь, которое в конечном счете производит монооксид и диоксид серы, который содержится в выхлопных газах, что способствует кислотным дождям.

Двигатель внутреннего сгорания — Что такое Двигатель внутреннего сгорания?

Двигатель внутреннего сгорания — тепловой двигатель, который преобразовывает теплоту сгорания топлива в механическую работу.

Двигатель внутреннего сгорания — тепловой двигатель, который преобразовывает теплоту сгорания топлива в механическую работу.

По сравнению с паромашинной установкой двигатель внутреннего сгорания характеризуется следующими признаками:

  • принципиально проще (нет парокотельного агрегата),

  • компактнее,

  • легче,

  • экономичнее,

  • требует газообразное и жидкое топливо лучшего качества.

Типы двигателей внутреннего сгорания


По назначению:

  • транспортные, 

  • стационарные, 

  • специальные.

По роду применяемого топлива:

  • легкие жидкие (бензин, газ), 

  • тяжелые жидкие (дизельное топливо, судовые мазуты).

По способу образования горючей смеси:

  • внешнее (карбюратор),

  • внутреннее (в цилиндре ДВС).

По способу воспламенения:

  • с принудительным зажиганием, 

  • с воспламенением от сжатия, 

  • калоризаторные.

По расположению цилиндров:

  • рядные, 

  • вертикальные, 

  • оппозитные с одним и с двумя коленвалами, 

  • V-образные с верхним и нижним расположением коленвала, 

  • VR-образные и W-образные, 

  • однорядные и двухрядные звездообразные, 

  • Н-образные, 

  • двухрядные с параллельными коленвалами, 

  • «двойной веер», 

  • ромбовидные, 

  • трехлучевые и др.

Поршневой двигатель — это двигатель, у которого камера сгорания находится в цилиндре, где тепловая энергия топлива превращается в механическую энергию, а механическая из поступательного движения поршня превращается во вращательную с помощью кривошипно-шатунного механизма.

Бензиновый двигатель — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. 

Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.

Дизельный двигатель характеризуется воспламенением топлива без использования свечи зажигания. 

В разогретый от сжатия воздух (до температуры, превышающей температуру воспламенения топлива) через форсунку впрыскивается порция топлива. 

В процессе впрыскивания топлива происходит его распыливание, а затем вокруг отдельных капель топлива возникают очаги сгорания. 

Т.к. дизельные двигатели не подвержены явлению детонации, характерному для двигателей с принудительным воспламенением, в них допустимо использование более высоких степеней сжатия (до 26), что благотворно сказывается на КПД данного типа двигателей, который может превышать 50% в случае с крупными судовыми двигателями.

Газовый двигатель — двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях

Роторно-поршневой двигатель — двигатель, конструкция которого предложена изобретателем Ванкелем в начале ХХ века. 

Основа двигателя — треугольный ротор (поршень), вращающийся в камере особой 8-образной формы, исполняющий функции поршня, коленвала и газораспределителя. 

Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. 

За 1 оборот двигатель выполняет 3 полных рабочих цикла, что эквивалентно работе 6-цилиндрового поршневого двигателя.

Двигатели внешнего сгорания

Энергосберегающие технологии: Теплоэнергетическая установка FX-38 на основе двигателя внешнего сгорания с сжиганием газообразного топлива

Принцип работы

Предлагаемая инновационная технология основана на использовании высокоэффективного четырехцилиндрового двигателя внешнего сгорания. Это — тепловой двигатель. Тепло может поставляться от внешнего источника тепла или производиться путем сжигания широкого спектра видов топлива внутри камеры сгорания.

Тепло поддерживается при постоянной температуре в одном отделении двигателя, где оно преобразуется в водород, находящийся под давлением. Расширяясь, водород толкает поршень. В отделении двигателя с низкой температурой водород охлаждается при помощи аккумуляторов тепла и охладителей жидкости. При расширении и сжатии водород вызывает возвратно-поступательное движение поршня, которое преобразуется во вращательное движение при помощи наклонной шайбы, которая приводит в действие стандартный, емкостный электрический генератор. В процессе охлаждения водорода также производится тепло, которое можно использовать для комбинированного производства электроэнергии и тепла во вспомогательных процессах.

Общее описание

Теплоэнергетическая установка FX-38 представляет собой единый модуль «двигатель-генератор», который включает двигатель внешнего сгорания, систему сгорания, работающую на пропане, природном газе, попутном нефтяном газе, других видах топлива со средней и низкой энергоемкостью (биогаз), индуктивный генератор, систему контроля двигателя, защищенный от атмосферных воздействий корпус со встроенной системой вентиляции и другое вспомогательное оборудование для параллельной работы с сетью высокого напряжения.

Номинальная мощность по электричеству при работе на природном газе или биогазе при частоте 50 Гц составляет 38 кВт. Кроме того, установка производит 65 кВт-ч извлекаемого тепла с поставляемой по специальному заказу системой комбинированного производства тепла и электроэнергии.

Установка FX-38 может быть оснащена различными опциями системы охлаждения для обеспечения гибкости схемы установки. Продукт разработан для простого подключения к электрическим контактам, системам подачи топлива и внешним трубам системы охлаждения, если оборудованы таковыми.

Дополнительные детали и опции

  • Модуль измерения мощности (обеспечивает установленный трансформатор тока для считывания на дисплее параметров переменного тока)
  • Опция дистанционного мониторинга по интерфейсу RS-485
  • Опции встроенного, либо удаленно смонтированного радиатора
  • Опция использования пропанового топлива
  • Опция использования природного газа
  • Опция использования попутного нефтяного газа
  • Опция использования топлива низкой энергоемкости

Установка FX-48 может применяться в нескольких вариантах следующим образом:

  • Параллельное подключение к высоковольтной сети при 50 Гц, 380 В переменного тока
  • Режим совместной выработки тепла и электроэнергии

Эксплуатационные характеристики установки

Выходная мощность складывается из электрической мощности и тепловой мощности. Для работы при частоте 50 Гц установка работает с тепловым коэффициентом 12230 кДж/кВт-ч (низшая теплота сгорания) и рассчитана на электрическую мощность 38 кВт. Показатель вырабатываемой электроэнергии 38 кВт включает паразитные потери, связанные с радиатором системы охлаждения, водяным насосом, вентилятором подачи воздуха в камеру сжигания, масляным насосом, контрольной системой и системой вентиляции блока.

В режиме производства электроэнергии и тепла при частоте 50 Гц установка производит 65 кВт-ч извлекаемого тепла. Продукт оборудован системой труб, готовой для подключения к поставляемому заказчиком теплообменнику типа жидкость/жидкость. Горячая сторона теплообменника представляет собой схему замкнутого цикла с охладителем кожуха двигателя и встроенным радиатором системы, если таковые присутствуют. Холодная сторона теплообменника предназначена для схем теплоприемника заказчика.

Техническое обслуживание

Установка предназначена для непрерывной работы и отбора мощности. Базовая проверка эксплуатационных характеристик проводится заказчиком с интервалом в 1000 часов и включает проверку системы водяного охлаждения и уровня масла. Через 10000 часов эксплуатации производится обслуживание передней части установки, включающее замену поршневого кольца, сальника штока, ремня привода и различных сальников. Специфические ключевые компоненты проверяются на износ. Скорость работы двигателя составляет 1500 оборотов в минуту для работы на частоте 50 Гц.

Бесперебойность

Бесперебойность работы установки составляет свыше 95%, исходя из интервалов эксплуатации, и учитывается при графике технического обслуживания.

Уровень звукового давления

Уровень звукового давления блока без встроенного радиатора составляет 64 дБА на расстоянии 7 метров. Уровень звукового давления блока с встроенным радиатором с вентиляторами охлаждения составляет 66 дБА на расстоянии 7 метров.

Выбросы

При работе на природном газе выбросы двигателя меньше или равны 0,0574 г/Нм3 NOx, 15,5 г/Нм3 летучих органических соединений и 0,345 г/Нм3 СО.

Газообразное топливо

Двигатель рассчитан на работу на различных типах газообразного топлива со значениями низшей теплоты сгорания от 13,2 до 90,6 МДж/Нм3, попутный нефтяной газ, природный газ, угольный метан, газ вторичной переработки, пропан и биогаз полигонов ТБО. Для охвата данного диапазона устройство может быть заказано со следующими конфигурациями топливной системы:

Система сгорания требует регулируемого давления подачи газа в 124-152 мбар для всех типов топлива.

Окружающая среда

Установка в стандартном исполнении работает при температуре окружающей среды от -20 до +50°С.

Описание установки

Теплоэнергетическая установка FX-38 полностью готова для выработки электроэнергии в заводской поставке. Встроенный электрический пульт монтируется на блок для удовлетворения требований интерфейса и контроля. Устойчивый к атмосферным воздействиям цифровой дисплей, встроенный в электрический пульт, обеспечивает оператору интерфейс запуска, остановки и перезапуска с помощью кнопок. Электрический пульт также служит основным местом подключения оконечного электрического устройства заказчика, а также с оконечными устройствами проводной связи.

Установка способна достигать выходной мощности полной нагрузки примерно через 3-5 минут с момента запуска в зависимости от изначальной температуры системы. Последовательность запуска и установки приводится в действие нажатием кнопки.

После команды пуска установка подключается к высоковольтной сети путем закрытия внутреннего контактора на сеть. Двигатель немедленно поворачивается, очищая камеру сжигания до открытия топливных клапанов. После открытия топливного клапана энергия подается на запальное устройство, поджигая топливо в камере сжигания. Наличие сжигания определяется по повышению температуры рабочего газа, что приводит в действие процедуру управления разгоном до точки рабочей температуры. После этого пламя остается самоподдерживающимся и постоянным.

После команды остановки установки сначала закрывается топливный клапан для прекращения процесса сжигания. По прошествии предварительно установленного времени, в течение которого механизм охлаждается, откроется контактор, отключая установку от сети. В случае если таковые установлены, вентиляторы радиатора могут работать некоторое время для уменьшении температуры охлаждающей жидкости.

В установке используется двигатель внешнего сгорания с постоянной длиной хода, подключенный к стандартному индукционному генератору. Устройство работает параллельно с высоковольтной сетью или параллельно с системой распределения энергии. Индукционный генератор не создает своего собственного возбуждения: он получает возбуждение от подключенного источника электросети. Если напряжение в электросети исчезает, установка отключается.

Описание узлов установки

Конструкция установки обеспечивает ее простой монтаж и подключение. Имеются внешние соединения для топливных труб, оконечных устройств электроэнергии, интерфейсов коммуникаций и, если это предусмотрено, внешнего радиатора и система труб теплообменника жидкость/жидкость. Установку можно заказать в комплекте со встроенным или удаленно монтированным радиатором и/или системой труб теплообменника жидкость/жидкость для охлаждения двигателя. Также предоставляются инструменты для безопасного отключения и логические схемы управления, разработанные специально для желаемого режима работы.

Кожух имеет две эксплуатационные панели на каждой стороне отделения двигатель/генератор и внешнюю однопетельную дверь для доступа к электрическому отделению.

Вес установки: около 1770 кг.

Двигатель является 4-цилиндровым (260 см3/цилиндр) двигателем внешнего сгорания, поглощающим тепло непрерывного сжигания газового топлива в камере внутреннего сгорания, и включает следующие встроенные компоненты:

  • Вентилятор подачи воздуха в камеру сгорания, приводится в действие двигателем
  • Воздушный фильтр камеры сгорания
  • Топливная система и кожух камеры сгорания
  • Насос для смазочного масла, приводится в действие двигателем
  • Охладитель и фильтр для смазочного масла
  • Водяной насос системы охлаждения двигателя, приводится в действие двигателем
  • Температурный датчик воды в системе охлаждения
  • Датчик давления смазочного масла
  • Датчик давления и температуры газа
  • Все необходимое контрольное и защитное оборудование

Характеристики генератора приводятся ниже:

  • Номинальная мощность 38 кВт при 50 Гц, 380 В переменного тока
  • Электрический КПД 95,0% при коэффициенте мощности 0,7
  • Возбуждение от коммунальной электросети при помощи индукционного мотора/генераторного возбудителя
  • Менее 5% общих гармонических искажений от отсутствия нагрузки до полной нагрузки
  • Класс изоляции F

Интерфейс оператора – цифровой дисплей обеспечивает управление установкой. Оператор может запустить и остановить установку с цифрового дисплея, посмотреть время работы, рабочие данные и предупреждения/сбои. При установке опционального модуля измерения мощности оператор может видеть многие электрические параметры, такие как вырабатываемая мощность, киловатт-часы, киловатт-амперы и коэффициент мощности.

Функция диагностики оборудования и сбора данных встроена в систему контроля установки. Диагностическая информация упрощает удаленный сбор данных, отчет по данным и устранение неисправностей устройства. Эти функции включают сбор системных данных, таких как информация о рабочем состоянии, все механические рабочие параметры, такие как температура и давление цилиндров, а также, если подключен опциональный измеритель мощности, – электрические параметры значений вырабатываемой мощности. Данные могут быть переданы через стандартный порт соединения RS-232 и показаны на персональном компьютере или ноутбуке при помощи программного обеспечения для сбора данных. Для нескольких установок или в случаях, когда расстояние передачи сигнала превышает возможности RS-232, для получения данных используется опциональный порт RS-485 с использованием протокола MODBUS RTU.

Для переноса горячих выхлопных газов от системы сгорания используются трубы из нержавеющей стали. К выхлопной трубе в месте выхода из кожуха прикреплена сбалансированная выхлопная заслонка с защитным колпаком от дождя и снега.

Для охлаждения могут применяться различные прикладные технологии и конфигураций:

Встроенный радиатор – предоставляет собой радиатор, рассчитанный на температуру окружающей среды до +50°C. Все трубы подключаются в заводских условиях. Это типичная технология в случае, если не используется утилизация отходящего тепла.

Внешний радиатор – предназначен для установки заказчиком, рассчитан на температуру окружающей среды до +50°C. Короткие несущие ножки поставляются с радиатором для монтажа на контактном столике. При необходимости установки в помещении можно использовать данный вариант вместо предоставления системы вентиляции, требуемой для подачи охлаждающего воздуха во встроенный радиатор.

Внешняя система охлаждения – предоставляет систему труб снаружи кожуха для поставляемой заказчиком системы охлаждения. Ей может выступать теплообменник или удаленно монтированный радиатор.

Хладагент состоит из 50% воды и 50% этиленгликоля по объему: можно заменить смесью пропиленгликоля и воды, при необходимости.

Установка FX-38 использует водород в качестве рабочего тела для приведения в движение поршней двигателей по причине высоких способностей водорода к передаче тепла. В нормальном режиме работы потребляется предсказуемое количество водорода из-за нормальных утечек, вызванных проницаемостью материала. Для учета этого темпа потребления место установки требует наличия одного или нескольких наборов баллонов с водородом, отрегулированных и подсоединенных к блоку. Внутри установки встроенный водородный компрессор увеличивает давление в баллоне до более высокого давления в двигателе и вводит малые порции по запросу встроенного программного обеспечения. Встроенная система не требует технического обслуживания, а баллоны подлежат замене в зависимости от работы двигателя.

Для подачи топлива поставляется труба со стандартной трубной резьбой 1 дюйм для всех стандартных типов топлива, за исключением низкоэнергетических вариантов, для которых используется стандартная трубная резьба 1 1/2 дюйма. Требования к давлению топлива для всех видов газообразного топлива составляют от 124 до 152 мбар.

Новый способ приготовления горючей смеси в ДВС — Энергетика и промышленность России — № 22 (234) ноябрь 2013 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 22 (234) ноябрь 2013 года

Практическая реализация этих направлений достигалась в том числе за счет использования широкого диапазона углеводородных горючих: от бензинов и керосинов – до высоковязких мазутов и сырой нефти. А также – за счет применения различных способов, схем и параметров подачи топлива и воздуха для приготовления горючей смеси.

Влияние вида сжигаемого топлива

На сегодняшний день двигатели внутреннего сгорания разработаны практически для каждого вида углеводородного горючего. Многие эксплуатационные показатели топлива, как известно, являются обязательными и необходимыми для выполнения теплового расчета ДВС.

Именно от планируемого к использованию топлива зависят тактико-технические характеристики и функциональные возможности двигателя. Так, элементарный состав топлива формирует качество сжигаемого горючего и его калорийность (теплоту сгорания или теплотворную способность), которые определяют расходы топлива, воздуха и продуктов сгорания, а также коррозионный износ цилиндров, газовыпускного тракта и экологическую чистоту двигателя. Вязкость и плотность используемого топлива влияют не только на прокачиваемость, качество распыла и испарение топлива, но и на маневренность двигателя (например, на время запуска и на время перехода с одного режима работы на другой), его взрывопожаробезопасность. Кроме того, элементарный состав топлива определяет полноту и теплонапряженность процесса сгорания топлива, а в конечном счете – мощность двигателя и его долговечность.

Влияние параметров топлива

На работу двигателей внутреннего сгорания не последнее влияние оказывают параметры подаваемого в него топлива. Основными параметрами подачи топлива в ДВС являются его давление и расход, при этом каждый тип двигателя имеет свои показатели указанных параметров. Необходимо отметить, что расход топлива на двигатель – это производная от его давления: чем выше давление топлива, тем больше его расход, и наоборот. Поскольку воспламенение и сгорание любого вида топлива происходят только в парогазовой фазе, то качественному и полному сгоранию топлива в двигателе должно обязательно предшествовать его полное испарение. Для перевода в паровую фазу жидкое горючее необходимо мелко распылить – между тем хорошо известно, что качество распыла определяется в том числе и величиной давления подаваемого топлива. Так, в двигателях внутреннего сгорания с искровым зажиганием для испарения топлива, происходящего до цилиндров в карбюраторе или инжекторе, достаточно атмосферного давления. В то же время в двигателях с воспламенением от сжатия (дизелях) для нормального процесса парообразования топлива, реализуемого во внутренней полости цилиндров, горючее необходимо подавать с избыточным давлением.

Таким образом, расход подаваемого в цилиндры топлива определяет мощность двигателя, а его давление – качество и полноту протекания процесса сгорания в цилиндрах.

Влияние воздуха

Атмосферный воздух, включающий в свой состав природный окислитель кислород, является обязательным и необходимым для организации и протекания процесса горения компонентом. Количество и способ подачи воздуха в двигатель влияют на количественно-качественные характеристики цепной реакции окисления горючего и, в конечном итоге, на мощность, экономичность и экологичность двигателя.

По Менделееву, на сжигание 1 килограмма углеводородного топлива теоретически необходимо 10 килограммов атмосферного воздуха. Недостаток, равно как и избыток, подаваемого в двигатель воздуха негативно сказывается на его работе. Так, недостаточное количество воздуха приводит к приготовлению обогащенной горючей смеси, снижению экономичности, долговечности, повышенному нагарообразованию на внутренних стенках цилиндров и газовыходного тракта двигателя и к интенсивному загрязнению природной среды продуктами неполного сгорания. В то же время избыток подаваемого на горение воздуха формирует обедненную смесь, что вызывает повышенное окисление конструкционных материалов внутренних полостей цилиндров и газовыходного тракта, снижение мощности двигателя, перерасход топлива, интенсивное тепловое загрязнение атмосферы и т. п.

Известно, что вид и структура углеводородных молекул, а также соотношение углерода к водороду (С:Н) в них различны и в процессе подачи топлива на горение изменяются ежемоментно. В связи с этим для полного сжигания топлива количество воздуха, подаваемого на приготовление горючей смеси, заранее завышается по сравнению с теоретически необходимым. Превышение количества фактически подаваемого воздуха над теоретически необходимым его количеством отражается через значение коэффициента избытка воздуха α, который при традиционном способе приготовления горючей смеси в сегодняшних двигателях внутреннего сгорания составляет от 1,1‑1,5 (при атмосферной подаче воздуха на приготовление горючей смеси) до 5,0 (при турбокомпрессорной подаче воздуха на приготовление горючей смеси).

О топливоподающей системе и подаче воздуха

Используемые сегодня топливоподающие системы ДВС были разработаны еще в начале XX века и, несмотря на ужесточение старых и появление новых (например, экологических) требований к двигателям, применяются до сих пор без принципиальных изменений.

Приоритет в совершенствовании топливных систем ДВС за прошедшее столетие отдавался главным образом количественным показателям. В частности – давлению топлива перед форсунками двигателя, величина которого выросла с 10‑50 кг / см2 в начале XX века до 2000 кг/см2 в начале XXI века. Повышение давления подаваемого топлива позволило, в конечном итоге, при сохранении массогабаритных характеристик двигателей добиться значительного увеличения их мощности.

Следует отметить, что сегодня топливоподающие системы двигателей внутреннего сгорания включают практически те же элементы, что и сто лет назад: топливную емкость, фильтры грубой и тонкой очистки, насос (для дизелей – топливоподкачивающий насос и топливный насос высокого давления), карбюратор или инжектор (для бензиновых двигателей), форсунки (для дизелей) и всасывающий, напорный, сливной трубопроводы.

Одновременно с топливоподающими системами стал применяться используемый до сих пор атмосферный способ подачи воздуха в двигатели.

Приоритет в совершенствовании способов подачи воздуха в двигатели отдавался не только количественным, но и качественным показателям, в частности увеличению напора и расхода воздуха, подаваемого на смешение с топливом, а также повышению степени турбулизации воздушного потока. Итогом такого подхода явилось широкое внедрение вентиляторного, а затем и турбокомпрессорного способов подачи воздуха в двигатель.

При атмосферном способе воздух поступает в воздушный коллектор за счет перепада давлений в атмосфере и в цилиндре двигателя при движении поршня в нижнюю мертвую точку. При вентиляторном способе формируется ламинарный воздушный поток, принудительно подаваемый в воздушный коллектор посредством приводимого во вращение от коленчатого вала вентилятора. Турбокомпрессорный способ предусматривает получение и подачу в воздушный коллектор турбулентного воздушного потока с помощью воздушного компрессора, приводимого во вращение расположенной в выходном коллекторе двигателя газовой турбиной.

Совершенствование способов подачи воздуха в ДВС позволило, не повышая расхода топлива и сохранив массогабаритные характеристики, достичь более высоких показателей мощности двигателей – главным образом за счет активизации и интенсификации процесса горения и повышения, таким образом, теплонапряженности в цилиндрах. Так, применение вентиляторного способа позволило увеличить мощность двигателя в полтора-два раза, а турбокомпрессорного – в два – два с половиной и более раз по сравнению с использованием атмосферного способа подачи воздуха.

Традиционный способ

Сегодня во всех двигателях внутреннего сгорания используется одинаковый способ приготовления горючей смеси, в котором в качестве первичной среды выступает топливо, а вторичной – воздух. Этот способ применяется более ста лет и стал уже традиционным. Суть его в следующем. Распыленное до мельчайших (20 мкм и менее) частиц топливо подается в поток атмосферного воздуха, который, перемешиваясь с горючим, образует топливовоздушную аэрозоль. Впоследствии горючая аэрозоль зажигается электрическим разрядом от свечи (в бензиновых двигателях) или самовоспламеняется от сжатия (в дизельных двигателях) и сгорает.

Условно процесс сгорания топлива в цилиндре можно разделить на три стадии (начальную, среднюю, конечную). В начальной стадии топливовоздушная смесь охватывается пламенем, происходит ее воспламенение и формирование первичного очага пламени, интенсивное испарение поверхностного слоя горючего и его горение в тонкой паровой фазе.

Продолжительность начальной стадии определяется скоростью тепловыделения реакции окисления. Средняя стадия процесса горения характеризуется интенсивным распространением пламени по всему объему горючей смеси. Скорость сгорания смеси резко увеличивается вследствие увеличения площади контакта взаимодействующих компонентов (поверхности испарения) и турбулизации смеси. На конечной стадии происходит догорание топлива, падение скорости и прекращение распространения пламени, вызванные резким снижением количества кислорода.

Следует отметить, что в реакции окисления углеводородного топлива участвует только теоретически необходимое количество воздуха. Остальной же воздух (избыток) в реакции горения (окисления) участия не принимает, а проходит транзитом через зону горения и, мгновенно нагреваясь от температуры окружающей среды до температуры в цилиндре, сбрасывается горячим в составе выхлопных газов в атмосферу, являясь причиной ее интенсивного теплового загрязнения. При этом на нагрев избыточного воздуха дополнительно затрачивается углеводородное топливо, что приводит к его перерасходу. Очевидно, что с повышением избытка воздуха увеличивается и количество затраченного на его нагрев сжигаемого топлива.

О новом способе приготовления горючей смеси

Наряду с традиционно применяемым способом приготовления горючей смеси существуют и другие способы, например струйно-кавитационный.

В основу этого способа положены физические явления, возникающие во внутренних полостях струйных аппаратов при их прокачке жидкими и газообразными средами. При струйно-кавитационном способе приготовления горючей смеси в качестве первичной среды используется не топливо, а атмосферный воздух.

Суть его заключается в следующем. Заданное (как правило, близкое к теоретически необходимому) количество воздуха всасывается из атмосферы и под давлением выше атмосферного подается в струйный насос. При высокоскоростном течении воздуха через внутреннюю полость проточной части насоса в его приемной камере создается разрежение, достаточное для самовсасывания вторичной среды – жидкого топлива.

При самовсасывании топлива его углеводородные молекулы расщепляются на молекулы меньшей молекулярной массы, отдельные атомы и топливные радикалы и в таком виде смешиваются с воздухом. В результате на выходе из насоса получается высококачественная гомогенная (размеры топливных частиц не превышают 10 мкм) воздушно-топливная (а не топливо-воздушная) аэрозоль, которая затем поступает непосредственно на горение. Количество топлива в смеси регулируется расходом воздуха на насос, а качество распыла (дисперсность) – давлением рабочего воздуха. С увеличением давления и количества подаваемого воздуха повышается и количество всасываемого топлива, и наоборот.

Характеристики подаваемой на горение горючей смеси, близкие к оптимальным, поддерживаются расходом и давлением воздуха перед насосом. Использование струйно-кавитационного способа приготовления горючей смеси позволяет регулировать мощность двигателя посредством изменения расхода и давления воздуха, подаваемого в струйный насос.

Струйно-кавитационный способ приготовления горючей смеси можно считать универсальным, поскольку он применим ко всем видам углеводородного топлива и топливосжигающим установкам.

Очевидно, что использование струйно-кавитационного способа приготовления горючей смеси потребует и принципиального качественно-количественного изменения топливо- и воздухоподающих систем двигателей.

На сегодняшний день струйно-кавитационный способ приготовления горючей смеси прошел лабораторные и промышленные испытания.

Выводы

Научно-технический прогресс, как известно, не стоит на месте и даже самые эффективные в свое время инженерные решения с годами устаревают и требуют замены на более совершенные. XXI век выдвигает новые требования и ставит новые задачи, в том числе и в области использования природных ресурсов, включая углеводородное топливо.

Все сказанное относится и к традиционному способу приготовления горючей смеси в двигателях внутреннего сгорания, который используется вот уже более ста лет.

транспортные средства только с двигателем внутреннего сгорания с искровым зажиганием с возвратно-поступательным движением поршня прочие:

В данную товарную позицию включаются моторные транспортные средства различных видов (включая моторные транспортные средства-амфибии), предназначенные для перевозки людей; однако в нее не включаются моторные транспортные средства товарной позиции 8702. У транспортных средств данной товарной позиции могут быть двигатели любого типа (двигатели внутреннего сгорания, электродвигатели, газотурбинные двигатели, комбинации поршневого двигателя внутреннего сгорания с одним или несколькими электрическими двигателями и т.д.).

В данную товарную позицию включаются:

  • (1) Транспортные средства, специально предназначенные для движения по снегу; автомобили для перевозки игроков в гольф и аналогичные транспортные средства.
    • (a) Транспортные средства, специально предназначенные для движения по снегу (например, снегомобили).
    • (б) Автомобили для перевозки игроков в гольф и аналогичные транспортные средства.
  • (2) Другие транспортные средства.
    • (a) Легковые автомобили (например, лимузины, такси, спортивные и гоночные автомобили).
    • (б) Специализированные транспортные средства, такие как автомобили скорой помощи, тюремные фургоны и катафалки.
    • (в) Моторные транспортные средства, оборудованные для проживания (туристские автофургоны и т.д.), транспортные средства для перевозки людей,  специально оборудованные под жилье (со спальными местами, кухней, туалетом и т.д.).
    • (г) Четырехколесные моторные транспортные средства с трубчатым шасси, имеющие автомобильную систему управления (например, систему управления на основе принципа Аккермана).

В данной товарной позиции термин «грузопассажирский автомобиль-фургон» означает транспортное средство, имеющее максимально 9 мест для сидения (включая водителя), внутреннее пространство которого может без конструктивных изменений использоваться для перевозки как людей, так и грузов.

Включение некоторых моторных транспортных средств в данную товарную позицию определяется некоторыми признаками, которые указывают на то, что данные транспортные средства в основном предназначены для транспортировки людей, а не для транспортировки грузов (товарная позиция 8704). Эти признаки применимы при классификации моторных транспортных средств, которые обычно имеют полную массу транспортного средства менее 5 тонн и которые имеют единое замкнутое внутреннее пространство, включающее в себя зону для водителя и пассажиров и другую зону, которая может использоваться для транспортировки как людей, так и грузов. В эту категорию обычно включаются транспортные средства, известные как «многоцелевые» транспортные средства (например, транспортные средства типа фургонов, обслуживающие спортивные автомобили, некоторые автомобили типа пикапа). Указанные ниже особенности являются характерными признаками конструкции, обычно свойственными транспортным средствам, которые включаются в эту товарную позицию:

  • (а) наличие постоянно установленных сидений с устройствами безопасности (например, с ремнями безопасности или с местами крепления и приспособлениями для установки ремней безопасности) для каждого человека или наличие постоянных мест крепления и приспособлений для установки сидений и устройств безопасности в задней зоне позади зоны для водителя и передних пассажиров; такие сиденья могут быть фиксированными, складывающимися, съемными на анкерном креплении или выносными;
  • (б) наличие окон в двух боковых панелях задней части кузова;
  • (в) наличие скользящей, открывающейся наружу или поднимающейся вверх двери или дверей, с окнами, на боковых панелях или сзади;
  • (г) отсутствие постоянной панели или перегородки между зоной для водителя и передних пассажиров и задней зоной, которая может использоваться для транспортировки как людей, так и грузов;
  • (д) наличие внешних признаков комфорта и внутренней отделки, а также приспособлений внутри всего салона транспортного средства, которыми отличаются пассажирские салоны транспортных средств (например, напольное покрытие, вентиляция, внутреннее освещение, пепельницы).

В данную товарную позицию также включаются облегченные трехколесные транспортные средства, такие как:

  • — транспортные средства, оборудованные мотоциклетными двигателем, колесами и т.д., которые в своей механической конструкции имеют признаки обычных автомобилей, то есть оснащены системой рулевого управления автомобильного типа или одновременно передачей заднего хода и дифференциалом;
  • — смонтированные на Т-образном шасси, в котором два задних колеса имеют независимые приводы от отдельных электрических двигателей с питанием от аккумуляторных батарей. Управление такими транспортными средствами, как правило, осуществляется от одного центрального рычага управления, с помощью которого водитель может начать движение транспортного средства, производить разгон, торможение, останавливаться и двигаться задним ходом, а также осуществлять повороты направо или налево путем изменения крутящего момента, передаваемого на ведущие колеса, или поворота переднего колеса.

Трехколесные транспортные средства, описанные выше, включаются в товарную позицию 8704, если они предназначены для перевозки грузов.

Транспортные средства данной товарной позиции могут быть как колесными, так и гусеничными.

Транспортные средства, сочетающие в себе поршневой двигатель внутреннего сгорания с одним или несколькими электрическими двигателями, называются гибридными электротранспортными средствами (HEVs). Для механической тяги в этих транспортных средствах используется энергия как горючего топлива, так и устройства для накопления электрической энергии (например, электрического аккумулятора, конденсатора, маховика/генератора). Имеются разные типы гибридных электротранспортных средств (HEVs), которые различаются схемой трансмиссии (такие как параллельные гибриды, последовательные гибриды, раздельные или последовательно–параллельные гибриды) и степенью гибридизации (например, полные гибриды, средние гибриды и гибриды с подзарядкой от электросети).

К гибридам с подзарядкой от электросети (PHEVs) относятся электротранспортные средства, электрические аккумуляторы которых можно подзаряжать от электрической розетки или зарядной станции.

Транспортные средства, приводимые в движение одним или несколькими электрическими двигателями с питанием от аккумуляторных батарей, называются электротранспортными средствами (EVs).

Специализированные транспортные средства для использования на аттракционах, например, аттракционах типа «автодром», включаются в товарную позицию 9508.

Судовой двигатель СУДОВЫЕ ДИЗЕЛИ, СУДОВЫЕ ДИЗЕЛЬНЫЕ ДВИГАТЕЛИ, СУДОВЫЕ ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ —

Судовой двигатель

СУДОВОЙ ДВИГАТЕЛЬ

входит в состав судовой энергетической установки. Судовые двигатели различают  на главные судовые

двигатели (обеспечивающие движение судна) и вспомогательные судовые двигатели (для привода электрогенераторов, насосов, вентиляторов и т. п.). В качестве судового двигателя используют двигатели внутреннего сгорания (ДВС – СУДОВЫЕ ДИЗЕЛИ, СУДОВЫЕ ДИЗЕЛЬНЫЕ ДВИГАТЕЛИ, СУДОВЫЕ ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ), паровые турбины, и газовые турбины.  Основными характеристиками судовых двигателей являются: большой ресурс, возможность реверсирования, умеренная трудоёмкость технического обслуживания, проводимого в судовых условиях, использование топлива в основном тяжёлых сортов, отсутствие жёстких ограничений по массе и размерам двигателя.

Чаще всего на судах используются ДВС — судовые дизели, обладающие наибольшей экономичностью из всех типов судовых двигателей. На транспортных, промысловых и вспомогательных судах применяются мало-, средне- и высокооборотные дизели с наддувом. Малооборотные судовые двигатели внутреннего сгорания используются как главные двигатели судов различных типов; их агрегатная мощность составляет 2,2—35 Мвт, число цилиндров 5—12, удельный эффективный расход топлива 210—215 г/ (квт×ч), частота вращения 103—225 об / мин. Среднеоборотные судовые двигатели внутреннего сгорания используются преимущественно в качестве главных двигателей судов среднего размера; их мощность достигает 13,2 Мвт, число цилиндров 6—20, эффективный расход топлива 205—210 г/(квт×ч), частота вращения 300—500 об/мин. Высокооборотные судовые двигатели внутреннего сгорания применяются в основном как главные двигатели на малых судах, а также в качестве вспомогательных двигателей на судах всех типов; их агрегатная мощность до 2 Мвт, число цилиндров 12—16, удельный эффективный расход топлива 215—230 г/(квт×ч), частота вращения свыше 500 об/мин.

Паровые турбины по степени распространённости несколько уступают двс; используются в качестве главных двигателей на крупных танкерах, контейнеровозах, газовозах и других судах, а также на судах с ядерной энергетической установкой (см. Атомный ледокол «Ленин»). Применяются также как вспомогательные двигатели. Мощность паротурбинных установок достигает 80 Мвт, удельный эффективный расход топлива 260—300 г/(квт×ч), частота вращения турбины 3000—4000 об/мин.

Газовые турбины в составе судовых двигателей применяются в основном в качестве главных двигателей на военных кораблях, транспортных судах на подводных крыльях и на судах на воздушной подушке. Примером газовых турбин является судовой газотурбинный двигатель. Эксплуатация судовых дизелей— подготовка дизельной установки к действию, пуск дизеля, обслуживание дизеля во время работы, вывод из действия (остановка) дизеля в соответствии с инструкцией завода-изготовителя и Правилами технической эксплуатации (ПТЭ).
РАЗДЕЛ «ОБОРУДОВАНИЕ»    

 


 
«Аппаратдизель», ООО  
Экспорт/импорт оборудования и запасных частей для агрегатов на базе отечественных дизелей размерности 6 ЧН 36/45, 6-8Ч23/30, 6Ч18/22, 3Д6, 4Ч9,5/11, 4Ч12/14 и их ремонтом. Диапазон оборудования базирующегося на этих двигателях: от электростанций больших мощностей 1000 кВт и до судовых установок главных и стационарных.
Роспромснаб  
Филиал ООО «АлтайРОСПРОМСНАБ» занимается материально-техническим снабжением флота.Мы специализируемся на поставке главных и вспомогательных судовых дизелей ЧН 15/18(дизели 3Д6, 3Д12, 7Д6, 7Д12), а также запасных частей к ним. На складе имеются : главные судовые дизели: 3Д6С2; 3Д6Н-235С2; 3Д12А, 3Д12А-1; 3КД12Н-520; 3КД12Н-520Р; ВАЗ-3415. Вспомогательные судовые дизели:7Д6-150; П 7Д6АФ-С2; 7Д12; 7Д12А-1; 1Д6БГС2-301; 1Д12В-300КС2-301.
Двигатель 3Д6, 3Д12, ЯМЗ запасные части  
Предлагаем Вам продукцию ОАО ХК Барнаултрансмаш, Турбомоторный завод : — Промышленные дизели (1Д6Н-250,2Д6Н, 1Д12-400БС,1Д12БС(БМС),2Д12, В2-450,В2-500) применяемые для привода механизмов буровой техники, маневровых тепловозов. — Стационарные дизели (1Д6-150,1Д6БА(БГС), 1Д12В-300), применяемые для привода дизель-генераторов 100-200кВт -Транспортные дизели (Д12А-525,Д12А-525А),применяемые для многоосных тягачей Типа МАЗ-537, 543, 7310, КЗКТ-7428, 74106 — Судовые дизели (3Д6, 3Д12, 7Д6, 7Д12) укомплектованные РРП 150-300 л.с. применяемые как главные и вспомогательные судовые дизели, а также предлагаем весь ассортимент запасных частей ОАО ХК Барнаултрансмаш с хорошим дисконтом. -Судовые дизели ЯМЗ ДРА 90-360 л.с. удовлетворяющих требованиям Российского Речного Регистра.
 
ОПИСАНИЕ ТЕРМИНОВ
Судовой газотурбинный двигатель
CГТД — тепловой двигатель, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины. Рабочий процесс ГТД может осуществляться с непрерывным сгоранием топлива при постоянном давлении или с прерывистым сгоранием топлива при постоянном объёме.
Основной источник электроэнергии на судах — дизель генератор.

Судовой дизель генератор
СДГ агрегат, состоящий из генератора и дизеля, образованный путём соед. их валов. Осн. достоинства Д.-г. — экономичность и быстрота запуска. Размеры Д.-г. тем меньше, чем больше частота вращения. Однако с ростом частоты вращения падает ресурс дизеля. Поэтому в составе осн. длительно работающих Д.-г. применяются средне-и малооборотные дизели с частотой вращения соотв. 750 и 250 об/мин. Потребление топлива Д.-г. составляет ок. 220-230 г на 1 кВт мощн. в теч. 1ч работы. В качестве генераторов на соврем. судах применяют в большинстве случаев синхронные явнополюсные генераторы с автомат. регуляторами напряжения. Регуляторы в зависимости от отклонения напряжения от установленного значения подают больший или меньший ток в обмотку возбуждения генератора, стабилизируя тем самым напряжение.
Дизель-компрессор судовой
ДКС — уст-во, использующее  хим.энергию топлива для сжатия воздуха и наполнения воздушных баллонов. Представляет собой агрегат, состоящий из одноцилиндрового двухтактного двигателя внутреннего сгорания и поршневого компрессора. Противоположно движущиеся поршни в цилиндре ДВС непосредственно соединены с поршнями компрессора. Д.-к. по конструктивному исполнению и принципу работы близок к свободопоршневому генератору газа. Выпускные газы дизельной части после приведения в действие поршней дизеля и компрессора отводятся в атмосферу. В суд. Д.-к. давление достигает 40 МПа, а их производительность -10 л/мин. Достоинством Д.-к. является независимость его работы от др. суд. оборудования, высокая экономичность расхода энергии на 1л сжатого воздуха и небольшие габариты.  
Если у Вас есть вопросы или Вы хотите стать участником любого из раздела обратитесь к нашим менеджерам: 
«РА Корабел.ру», ООО
тел.+7(812) 458-4452 
сот. +7 (921) 912-0373
[email protected]
skype www.korabel.ru
_____________________
Портал: www.korabel.ru
Журнал: www.korabel.su
Торговая площадка:
www.sudoremont.ru 
Морские сувениры 
https://www.korabel.ru/shop.html 
___________________
https://www.facebook.com/korabel.ru/
https://vk.com/korabelru
https://www.instagram.com/korabel_ru/

Аксиальные двигатели внутреннего сгорания / Хабр


Аксиальный ДВС Duke Engine

Мы привыкли к классическому дизайну двигателей внутреннего сгорания, который, по сути, существует уже целый век. Быстрое сгорание горючей смеси внутри цилиндра приводит к увеличению давления, которое толкает поршень. Тот, в свою очередь, через шатун и кривошип крутит вал.


Классический ДВС

Если мы хотим сделать двигатель помощнее, в первую очередь нужно увеличивать объём камеры сгорания. Увеличивая диаметр, мы увеличиваем вес поршней, что отрицательно сказывается на результате. Увеличивая длину, мы удлиняем и шатун, и увеличиваем весь двигатель в целом. Или же можно добавить цилиндров — что, естественно, также увеличивает результирующий объём двигателя.

С такими проблемами столкнулись инженеры ДВС для первых самолётов. Они, в конце концов, пришли к красивой схеме «звездообразного» двигателя, где поршни и цилиндры расположены по кругу относительно вала через равные углы. Такая система хорошо охлаждается потоком воздуха, но очень уж она габаритная. Поэтому поиски решений продолжались.

В 1911 году Macomber Rotary Engine Company из Лос-Анджелеса представила первый из аксиальных (осевых) ДВС. Их ещё называют «бочковыми», двигателями с качающейся (или косой) шайбой. Оригинальная схема позволяет разместить поршни и цилиндры вокруг основного вала и параллельно ему. Вращение вала происходит за счёт качающейся шайбы, на которую поочерёдно давят шатуны поршней.

У двигателя Макомбера было 7 цилиндров. Изготовитель утверждал, что двигатель был способен работать на скоростях от 150 до 1500 об/мин. При этом на 1000 об/мин он выдавал 50 л.с. Будучи изготовлен из доступных в то время материалов, он весил 100 кг и имел размеры 710×480 мм. Такой двигатель был установлен в самолёт авиатора-первопроходца Чарльза Фрэнсиса Уолша «Серебряный дротик Уолша».

Не остались в стороне и советские инженеры. В 1916-м году появился двигатель конструкции А. А. Микулина и Б. С. Стечкина, а в 1924 г — двигатель Старостина. Об этих двигателях знают, пожалуй, только любители истории авиации. Известно, что детальные испытания, проведенные в 1924 г, выявили повышенные потери на трение и большие нагрузки на отдельные элементы таких двигателей.


Двигатель Старостина из музея авиации в Монино

Гениальный и слегка безумный инженер, изобретатель, конструктор и бизнесмен Джон Захария Делореан мечтал построить новую автомобильную империю в пику существующим, и сделать совершенно уникальный «автомобиль мечты». Все мы знаем машину DMC-12, которую называют просто DeLorean. Она не только стала звездой экрана в фильме «Назад в будущее», но и отличалась уникальными решениями во всём — начиная от алюминиевого кузова на плексигласовом каркасе и заканчивая дверями «крылья чайки». К сожалению, на фоне экономического кризиса производство машины не оправдало себя. А затем Делореан долго судился по подложному делу о наркотиках.

Но мало кто знает, что Делореан хотел дополнить уникальный внешний вид машины ещё и уникальным мотором — среди найденных после его смерти чертежей были и чертежи аксиального ДВС. Судя по его письмам, он задумал такой двигатель ещё в 1954 году, а всерьёз принялся за разработку в 1979-м. В двигателе Делореана было три поршня, и они располагались равносторонним треугольником вокруг вала. Но каждый поршень был двусторонним — каждый из концов поршня должен был работать в своём цилиндре.


Чертёж из тетради Делореана

По каким-то причинам рождение двигателя не состоялось — возможно, потому, что разработка автомобиля с нуля вышло достаточно сложным предприятием. На DMC-12 устанавливали 2,8-литровый двигатель V6 совместной разработки Peugeot, Renault и Volvo мощностью 130 л. с. Пытливый читатель может изучить сканы чертежей и заметок Делореана на этой странице.


Экзотический вариант аксиального двигателя — «двигатель Требента»

Тем не менее, такие двигатели не получили широкого распространения — в большой авиации постепенно состоялся переход на турбореактивные двигатели, а в автомобилях по сию пору используется схема, в которой вал перпендикулярен цилиндрам. Интересно только, почему такая схема не прижилась в мотоциклах, где компактность пришлась бы как раз кстати. По-видимому, они не смогли предложить какой-либо существенной выгоды по сравнению с привычным нам дизайном. Сейчас такие двигатели существуют, но устанавливаются в основном в торпедах — благодаря тому, как хорошо они вписываются в цилиндр.



Вариант под названием «Цилиндрический энергетический модуль» с двусторонними поршнями. Перпендикулярные штоки в поршнях описывают синусоиду, двигаясь по волнистой поверхности

Главная отличительная черта аксиального ДВС — компактность. Кроме того, в его возможности входит изменение степени сжатия (объёма камеры сгорания) просто путём изменения угла наклона шайбы. Шайба качается на валу благодаря сферическому подшипнику.

Однако новозеландская компания Duke Engines в 2013 году представила свой современный вариант аксиального ДВС. В их агрегате пять цилиндров, но всего лишь три форсунки для впрыска топлива и — ни одного клапана. Также интересной особенностью двигателя является тот факт, что вал и шайба вращаются в противоположных направлениях.

Внутри двигателя вращаются не только шайба и вал, но и набор цилиндров с поршнями. Благодаря этому удалось избавиться от системы клапанов — движущийся цилиндр в момент зажигания просто проходит мимо отверстия, куда впрыскивается топливо и где стоит свеча зажигания. На стадии выпуска цилиндр проходит мимо выпускного отверстия для газов.

Благодаря такой системе количество необходимых свечей и форсунок получается меньшим, чем количество цилиндров. А на один оборот приходится в сумме столько же рабочих ходов поршня, как у 6-цилиндрового двигателя обычного дизайна. При этом вес аксиального двигателя на 30% меньше.

Кроме того, инженеры из Duke Engines утверждают, что и степень сжатия их двигателя превосходит обычные аналоги и составляет 15:1 для 91-го бензина (у стандартных автомобильных ДВС этот показатель равен обычно 11:1). Все эти показатели могут привести к уменьшению расхода топлива, и, как следствие — к уменьшению вредного воздействия на окружающую среду (ну или к увеличению мощности двигателя — в зависимости от ваших целей).

Сейчас компания доводит двигатели до коммерческого применения. В наш век отработанных технологий, диверсификации, экономии на масштабе и т.п. сложно представить, как можно серьёзно повлиять на индустрию. В Duke Engines, по-видимому, это тоже представляют, поэтому намереваются предлагать свои двигатели для моторных лодок, генераторов и малой авиации.


Демострация малых вибраций двигателя Duke

Двигатель внутреннего сгорания — Energy Education

Двигатели внутреннего сгорания (ДВС) являются наиболее распространенной формой тепловых двигателей, поскольку они используются в транспортных средствах, лодках, кораблях, самолетах и ​​поездах. Они названы так потому, что топливо воспламеняется для выполнения работы внутри двигателя. [1] В качестве выхлопных газов выбрасывается та же смесь топлива и воздуха. Это можно сделать с помощью поршня (так называемого поршневого двигателя) или турбины.

Закон идеального газа

Тепловые двигатели внутреннего сгорания работают по принципу закона идеального газа: [math] pV = nRT [/ math].Повышение температуры газа увеличивает давление, которое заставляет газ расширяться. [1] Двигатель внутреннего сгорания имеет камеру, в которую добавлено топливо, которое воспламеняется для повышения температуры газа.

Когда в систему добавляется тепло, это заставляет внутренний газ расширяться. В поршневом двигателе это заставляет поршень подниматься (см. Рисунок 2), а в газовой турбине горячий воздух нагнетается в камеру турбины, вращая турбину (Рисунок 1). Присоединяя поршень или турбину к распределительному валу, двигатель может преобразовывать часть энергии, поступающей в систему, в полезную работу. [2] Для сжатия поршня в двигателе прерывистого внутреннего сгорания двигатель выпускает газ. Затем используется радиатор, чтобы система работала при постоянной температуре. Газовая турбина, которая использует непрерывное горение, просто выбрасывает свой газ непрерывно, а не по циклу.

Поршни и турбины

Рисунок 1. Схема газотурбинного двигателя. [3]

Двигатель, в котором используется поршень , называется двигателем прерывистого внутреннего сгорания , тогда как двигатель, использующий турбину , называется двигателем непрерывного внутреннего сгорания .Разница в механике очевидна из-за названий, но разница в использовании менее очевидна.

Поршневой двигатель чрезвычайно отзывчив по сравнению с турбиной, а также более экономичен при низкой мощности. Это делает их идеальными для использования в транспортных средствах, так как они также запускаются быстрее. И наоборот, турбина имеет превосходное отношение мощности к массе по сравнению с поршневым двигателем, а ее конструкция более надежна для продолжительной работы с высокой выходной мощностью. Турбина также работает лучше, чем поршневой двигатель без наддува, на больших высотах и ​​при низких температурах.Его легкий вес, надежность и возможность работы на большой высоте делают турбины предпочтительным двигателем для самолетов. Турбины также широко используются на электростанциях для выработки электроэнергии.

Двигатель четырехтактный

главная
Рис. 2. 4-х тактный двигатель внутреннего сгорания. 1: впрыск топлива, 2: зажигание, 3: расширение (работа выполнена), 4: выхлоп. [4]

Хотя существует множество типов двигателей внутреннего сгорания, четырехтактный поршневой двигатель (рис. 2) является одним из самых распространенных.Он используется в различных автомобилях (которые, в частности, используют бензин в качестве топлива), таких как автомобили, грузовики и некоторые мотоциклы. Четырехтактный двигатель обеспечивает один рабочий ход на каждые два цикла поршня. Справа есть анимация четырехтактного двигателя и дальнейшее объяснение процесса ниже.

  1. В камеру впрыскивается топливо.
  2. Загорается топливо (в дизельном двигателе это происходит иначе, чем в бензиновом).
  3. Этот огонь толкает поршень, что является полезным движением.
  4. Отходы химикатов, по объему (или массе) это в основном водяной пар и диоксид углерода. Могут быть загрязнители, а также окись углерода от неполного сгорания.

Двухтактный двигатель

главная
Рис. 3. 2-тактный двигатель внутреннего сгорания [5]

Как следует из названия, системе требуется всего два движения поршня для выработки энергии. Основным отличительным фактором, который позволяет двухтактному двигателю работать только с двумя движениями поршня, является то, что выпуск и впуск газа происходят одновременно, [6] , как показано на Рисунке 3.Сам поршень используется в качестве клапана системы вместе с коленчатым валом для направления потока газов. Кроме того, из-за частого контакта с движущимися компонентами топливо смешивается с маслом для добавления смазки, что обеспечивает более плавный ход. В целом двухтактный двигатель содержит два процесса:

  1. Воздушно-топливная смесь добавляется и поршень движется вверх (сжатие). Впускной канал открывается из-за положения поршня, и топливовоздушная смесь поступает в камеру хранения.Свеча зажигания воспламеняет сжатое топливо и начинает рабочий такт.
  2. Нагретый газ оказывает высокое давление на поршень, поршень движется вниз (расширение), отходящее тепло отводится.

Роторный двигатель (Ванкеля)

главная
Рисунок 4. Цикл роторного двигателя. Он всасывает воздух / топливо, сжимает его, воспламеняется, обеспечивая полезную работу, а затем выпускает газ. [7]

В двигателе этого типа имеется ротор (внутренний круг обозначен буквой «B» на рисунке 4), который заключен в корпус овальной формы.Он выполняет стандартные этапы четырехтактного цикла (впуск, сжатие, зажигание, выпуск), однако эти этапы выполняются 3 раза за один оборот ротора , создавая три такта мощности за один оборот .

Для дальнейшего чтения

Список литературы

  1. 1.0 1.1 Р. Д. Найт, «Тепловые двигатели и холодильники» в журнале Физика для ученых и инженеров: стратегический подход, 3-е изд. Сан-Франциско, США: Pearson Addison-Wesley, 2008, гл.19, сек 2, с. 530
  2. ↑ Р. А. Хинрихс и М. Кляйнбах, «Тепло и работа», в Энергия: ее использование и окружающая среда , 5-е изд. Торонто, Онтарио. Канада: Брукс / Коул, 2013, глава 4, стр.93-122
  3. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/4/4c/Jet_engine.svg
  4. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/d/dc/4StrokeEngine_Ortho_3D_Small.gif
  5. ↑ «Файл: Двухтактный двигатель.gif — Wikimedia Commons «, Commons.wikimedia.org, 2018. [Online]. Доступно: https://commons.wikimedia.org/wiki/File:Two-Stroke_Engine.gif.[ Дата обращения: 17 мая 2018 г.].
  6. ↑ С. Ву, Термодинамика и тепловые циклы. Нью-Йорк: Nova Science Publishers, 2007.
  7. ↑ Wikimedia Commons [Online], доступно: http://upload.wikimedia.org/wikipedia/commons/f/fc/Wankel_Cycle_anim_en.gif

Двигатель внутреннего сгорания — Energy Education

Двигатели внутреннего сгорания (ДВС) являются наиболее распространенной формой тепловых двигателей, поскольку они используются в транспортных средствах, лодках, кораблях, самолетах и ​​поездах.Они названы так потому, что топливо воспламеняется для выполнения работы внутри двигателя. [1] В качестве выхлопных газов выбрасывается та же смесь топлива и воздуха. Это можно сделать с помощью поршня (так называемого поршневого двигателя) или турбины.

Закон идеального газа

Тепловые двигатели внутреннего сгорания работают по принципу закона идеального газа: [math] pV = nRT [/ math]. Повышение температуры газа увеличивает давление, которое заставляет газ расширяться. [1] Двигатель внутреннего сгорания имеет камеру, в которую добавлено топливо, которое воспламеняется для повышения температуры газа.

Когда в систему добавляется тепло, это заставляет внутренний газ расширяться. В поршневом двигателе это заставляет поршень подниматься (см. Рисунок 2), а в газовой турбине горячий воздух нагнетается в камеру турбины, вращая турбину (Рисунок 1). Присоединяя поршень или турбину к распределительному валу, двигатель может преобразовывать часть энергии, поступающей в систему, в полезную работу. [2] Для сжатия поршня в двигателе прерывистого внутреннего сгорания двигатель выпускает газ.Затем используется радиатор, чтобы система работала при постоянной температуре. Газовая турбина, которая использует непрерывное горение, просто выбрасывает свой газ непрерывно, а не по циклу.

Поршни и турбины

Рисунок 1. Схема газотурбинного двигателя. [3]

Двигатель, в котором используется поршень , называется двигателем прерывистого внутреннего сгорания , тогда как двигатель, использующий турбину , называется двигателем непрерывного внутреннего сгорания .Разница в механике очевидна из-за названий, но разница в использовании менее очевидна.

Поршневой двигатель чрезвычайно отзывчив по сравнению с турбиной, а также более экономичен при низкой мощности. Это делает их идеальными для использования в транспортных средствах, так как они также запускаются быстрее. И наоборот, турбина имеет превосходное отношение мощности к массе по сравнению с поршневым двигателем, а ее конструкция более надежна для продолжительной работы с высокой выходной мощностью. Турбина также работает лучше, чем поршневой двигатель без наддува, на больших высотах и ​​при низких температурах.Его легкий вес, надежность и возможность работы на большой высоте делают турбины предпочтительным двигателем для самолетов. Турбины также широко используются на электростанциях для выработки электроэнергии.

Двигатель четырехтактный

главная
Рис. 2. 4-х тактный двигатель внутреннего сгорания. 1: впрыск топлива, 2: зажигание, 3: расширение (работа выполнена), 4: выхлоп. [4]

Хотя существует множество типов двигателей внутреннего сгорания, четырехтактный поршневой двигатель (рис. 2) является одним из самых распространенных.Он используется в различных автомобилях (которые, в частности, используют бензин в качестве топлива), таких как автомобили, грузовики и некоторые мотоциклы. Четырехтактный двигатель обеспечивает один рабочий ход на каждые два цикла поршня. Справа есть анимация четырехтактного двигателя и дальнейшее объяснение процесса ниже.

  1. В камеру впрыскивается топливо.
  2. Загорается топливо (в дизельном двигателе это происходит иначе, чем в бензиновом).
  3. Этот огонь толкает поршень, что является полезным движением.
  4. Отходы химикатов, по объему (или массе) это в основном водяной пар и диоксид углерода. Могут быть загрязнители, а также окись углерода от неполного сгорания.

Двухтактный двигатель

главная
Рис. 3. 2-тактный двигатель внутреннего сгорания [5]

Как следует из названия, системе требуется всего два движения поршня для выработки энергии. Основным отличительным фактором, который позволяет двухтактному двигателю работать только с двумя движениями поршня, является то, что выпуск и впуск газа происходят одновременно, [6] , как показано на Рисунке 3.Сам поршень используется в качестве клапана системы вместе с коленчатым валом для направления потока газов. Кроме того, из-за частого контакта с движущимися компонентами топливо смешивается с маслом для добавления смазки, что обеспечивает более плавный ход. В целом двухтактный двигатель содержит два процесса:

  1. Воздушно-топливная смесь добавляется и поршень движется вверх (сжатие). Впускной канал открывается из-за положения поршня, и топливовоздушная смесь поступает в камеру хранения.Свеча зажигания воспламеняет сжатое топливо и начинает рабочий такт.
  2. Нагретый газ оказывает высокое давление на поршень, поршень движется вниз (расширение), отходящее тепло отводится.

Роторный двигатель (Ванкеля)

главная
Рисунок 4. Цикл роторного двигателя. Он всасывает воздух / топливо, сжимает его, воспламеняется, обеспечивая полезную работу, а затем выпускает газ. [7]

В двигателе этого типа имеется ротор (внутренний круг обозначен буквой «B» на рисунке 4), который заключен в корпус овальной формы.Он выполняет стандартные этапы четырехтактного цикла (впуск, сжатие, зажигание, выпуск), однако эти этапы выполняются 3 раза за один оборот ротора , создавая три такта мощности за один оборот .

Для дальнейшего чтения

Список литературы

  1. 1.0 1.1 Р. Д. Найт, «Тепловые двигатели и холодильники» в журнале Физика для ученых и инженеров: стратегический подход, 3-е изд. Сан-Франциско, США: Pearson Addison-Wesley, 2008, гл.19, сек 2, с. 530
  2. ↑ Р. А. Хинрихс и М. Кляйнбах, «Тепло и работа», в Энергия: ее использование и окружающая среда , 5-е изд. Торонто, Онтарио. Канада: Брукс / Коул, 2013, глава 4, стр.93-122
  3. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/4/4c/Jet_engine.svg
  4. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/d/dc/4StrokeEngine_Ortho_3D_Small.gif
  5. ↑ «Файл: Двухтактный двигатель.gif — Wikimedia Commons «, Commons.wikimedia.org, 2018. [Online]. Доступно: https://commons.wikimedia.org/wiki/File:Two-Stroke_Engine.gif.[ Дата обращения: 17 мая 2018 г.].
  6. ↑ С. Ву, Термодинамика и тепловые циклы. Нью-Йорк: Nova Science Publishers, 2007.
  7. ↑ Wikimedia Commons [Online], доступно: http://upload.wikimedia.org/wikipedia/commons/f/fc/Wankel_Cycle_anim_en.gif
Основы двигателя внутреннего сгорания

| Министерство энергетики

Двигатели внутреннего сгорания обеспечивают исключительную управляемость и долговечность, от них в Соединенных Штатах полагаются более 250 миллионов транспортных средств по шоссе.Наряду с бензином или дизельным топливом они также могут использовать возобновляемые или альтернативные виды топлива (например, природный газ, пропан, биодизель или этанол). Их также можно комбинировать с гибридными электрическими силовыми агрегатами для повышения экономии топлива или подключаемыми гибридными электрическими системами для расширения ассортимента гибридных электромобилей.

Как работает двигатель внутреннего сгорания?

Горение, также известное как горение, является основным химическим процессом высвобождения энергии из топливно-воздушной смеси. В двигателе внутреннего сгорания (ДВС) воспламенение и сгорание топлива происходит внутри самого двигателя.Затем двигатель частично преобразует энергию сгорания в работу. Двигатель состоит из неподвижного цилиндра и подвижного поршня. Расширяющиеся газы сгорания толкают поршень, который, в свою очередь, вращает коленчатый вал. В конечном итоге это движение приводит в движение колеса автомобиля через систему шестерен трансмиссии.

В настоящее время производятся два типа двигателей внутреннего сгорания: бензиновый двигатель с искровым зажиганием и дизельный двигатель с воспламенением от сжатия. Большинство из них представляют собой четырехтактные двигатели, а это означает, что для завершения цикла требуется четыре хода поршня.Цикл включает четыре различных процесса: впуск, сжатие, сгорание, рабочий ход и выпуск.

Бензиновые двигатели с искровым зажиганием и дизельные двигатели с воспламенением от сжатия различаются по способу подачи и воспламенения топлива. В двигателе с искровым зажиганием топливо смешивается с воздухом, а затем вводится в цилиндр во время процесса впуска. После того, как поршень сжимает топливно-воздушную смесь, искра воспламеняет ее, вызывая возгорание. Расширение дымовых газов толкает поршень во время рабочего хода.В дизельном двигателе только воздух всасывается в двигатель, а затем сжимается. Затем дизельные двигатели распыляют топливо в горячий сжатый воздух с подходящей дозированной скоростью, вызывая его возгорание.

Совершенствование двигателей внутреннего сгорания

За последние 30 лет исследования и разработки помогли производителям снизить выбросы ДВС определенных загрязняющих веществ, таких как оксиды азота (NOx) и твердые частицы (PM), более чем на 99%, чтобы соответствовать стандартам выбросов EPA. . Исследования также привели к улучшению характеристик ДВС (мощность в лошадиных силах и время разгона 0-60 миль в час) и эффективности, помогая производителям поддерживать или увеличивать экономию топлива.

Узнайте больше о наших передовых исследованиях и разработках двигателей внутреннего сгорания, направленных на повышение энергоэффективности двигателей внутреннего сгорания с минимальными выбросами.

Двигатель внутреннего сгорания

Двигатель внутреннего сгорания
Гленн

Исследовательский центр
Центр

В течение сорока лет после первый полет братьев Райт использовались самолеты двигатели внутреннего сгорания повернуть пропеллеры чтобы генерировать толкать.Сегодня большинство самолетов гражданской авиации или частных самолетов все еще находятся в эксплуатации. с пропеллерами и двигателями внутреннего сгорания, как и ваш автомобильный двигатель. На этой странице мы обсудим основы двигатель внутреннего сгорания с использованием Двигатель братьев Райт 1903 года, показанный на рисунке в качестве примера.

Обсуждая двигатели, мы должны учитывать как механическая работа машина и термодинамический процессы, которые позволяют машине производить полезные работай. Базовая механическая конструкция двигателя Райта такова: замечательно похож на современный, четырехтактный, четыре цилиндра автомобильные двигатели.Как следует из названия, процесс горения двигателя внутреннего сгорания происходит в закрытом цилиндр . Внутри цилиндра движется поршень, который компрессы смесь топлива и воздуха перед сгоранием, а затем принудительно возвращается вниз по цилиндру после сгорания. На рабочий ход поршень вращает кривошип, который преобразует линейное движение поршень в круговое движение. Поворот коленчатый вал затем используется для поворота воздушного винта. В движение поршня повторяется в термодинамический цикл называется Цикл Отто который был разработан немецким доктором Dr.Н. А. Отто, 1876 г. и используется до сих пор.

Хотя есть некоторые важные различия между современными авиационные двигатели и двигатель Wright 1903, простота конструкции двигателя Райта делает его хорошей отправной точкой для студентов. Индивидуальные веб-страницы для всех основных систем и части предоставляются так, чтобы вы можете детально изучить каждый пункт. Вот программа на Java, которую вы можете использовать, чтобы посмотреть на движок из разнообразие локаций:

На этой странице показан интерактивный Java-апплет, который позволяет вам изменять вид авиационного двигателя 1903 года при нажатии кнопок для остановки, шага или поворота изображение.

Вы можете загрузить свою собственную копию этого апплета, нажав следующую кнопку:

Программа скачивается в формате .zip. Вы должны сохранить файл на диск и затем «Извлеките» файлы. Нажмите на «Engine.html» для автономной работы программы.


Деятельность:

Экскурсии с гидом

Навигация ..


Руководство для начинающих Домашняя страница

ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ

Двигатель внутреннего сгорания (ДВС) был доминирующим двигателем в нашем обществе с момента его изобретения в последней четверти 19 века [подробнее см., Например, Heywood (1988)].Его цель — генерировать механическую энергию из химической энергии, содержащейся в топливе и высвобождаемой при сгорании топлива внутри двигателя. Именно этот конкретный момент, когда топливо сжигается внутри производственной части двигателя, дает двигателям внутреннего сгорания их название и отличает их от других типов, таких как двигатели внешнего сгорания. Хотя газовые турбины удовлетворяют определению двигателя внутреннего сгорания, этот термин традиционно ассоциируется с с искровым зажиганием (иногда называемым Otto, бензиновые или бензиновые двигатели ) и с дизельными двигателями (или двигателями с воспламенением от сжатия ).

Двигатели внутреннего сгорания используются в самых разных приложениях: от судовых силовых установок и электростанций мощностью более 100 МВт до ручных инструментов с выдаваемой мощностью менее 100 Вт. Это означает, что размеры и характеристики современных двигателей широко варьируются между от крупных дизелей с диаметром цилиндра более 1000 мм, совершающего возвратно-поступательное движение со скоростью до 100 об / мин, до небольших бензиновых двухтактных двигателей с диаметром цилиндра около 20 мм. К этим двум крайностям относятся среднеоборотные дизельные двигатели, автомобильные дизели для тяжелых условий эксплуатации, двигатели грузовых и легковых автомобилей, авиационные двигатели, двигатели мотоциклов и небольшие промышленные двигатели.Среди всех этих типов бензиновые и дизельные двигатели для легковых автомобилей занимают видное место, поскольку они, безусловно, являются крупнейшими производимыми двигателями в мире; как таковые, их влияние на социальную и экономическую жизнь имеет первостепенное значение.

Большинство поршневых двигателей внутреннего сгорания работают по так называемому четырехтактному циклу (рис. 1), который подразделяется на четыре процесса: впуск, сжатие, расширение / мощность и выпуск. Каждому цилиндру двигателя требуется четыре хода поршня, что соответствует двум оборотам коленчатого вала, чтобы завершить последовательность, которая приводит к выработке мощности.

Рисунок 1. Цикл четырехтактного двигателя.

Такт впуска инициируется движением вниз поршня, который втягивает в цилиндр свежую топливно-воздушную смесь через узел порта / клапана и заканчивается, когда поршень достигает нижней мертвой точки (НМТ). Смесь создается либо с помощью карбюратора (как в обычных двигателях), либо путем впрыска бензина под низким давлением во впускной канал через инжектор игольчатого типа с электронным управлением (как в более совершенных двигателях).Фактически, процесс впуска начинается с открытия впускного клапана непосредственно перед верхней мертвой точкой (ВМТ) и заканчивается, когда впускной клапан (или клапаны в четырехклапанных двигателях на цилиндр) закрывается вскоре после НМТ. Время закрытия впускного клапана (ов) является функцией конструкции впускного коллектора, которая влияет на газовую динамику и объемный КПД двигателя, а также на частоту вращения двигателя.

За тактом впуска следует такт сжатия , который фактически начинается при закрытии впускного клапана.Его цель — подготовить смесь к горению за счет повышения ее температуры и давления. Горение инициируется энергией, выделяемой через свечу зажигания в конце такта сжатия, и связано с быстрым ростом давления в цилиндре.

Ход увеличения или расширения начинается с поршня в ВМТ сжатия и заканчивается в НМТ. В этот момент газы с высокой температурой и давлением, образующиеся во время сгорания, толкают поршень вниз, заставляя рукоятку вращаться.Непосредственно перед достижением поршнем НМТ открывается выпускной клапан (ы), и сгоревшие газы могут выйти из цилиндра из-за разницы давлений между цилиндром и выпускным коллектором.

Этот ход выхлопа завершает цикл двигателя, откачивая цилиндр от сгоревших, частично сгоревших или даже несгоревших газов, выходящих из процесса сгорания; следующий цикл двигателя начинается, когда впускной клапан открывается около ВМТ, а выпускной клапан закрывается на несколько градусов позже.

Важно отметить, что свойства бензина в сочетании с геометрией камеры сгорания оказывают значительное влияние на продолжительность горения, скорость повышения давления и образования загрязняющих веществ. При определенных условиях смесь конечного газа может самовоспламеняться до того, как пламя достигнет этой части цилиндра, что приведет к детонации , что вызывает колебания давления высокой интенсивности и частоты.

Способность бензинового топлива противостоять самовоспламенению и, таким образом, предотвращать возможное повреждение двигателя в результате детонации характеризуется своим октановым числом .До недавнего времени добавление небольшого количества свинца в бензин было предпочтительным методом подавления детонации, но связанные с этим риски для здоровья в сочетании с необходимостью использования катализаторов для снижения выбросов выхлопных газов вызвали необходимость введения неэтилированного бензина. Это требует уменьшения степени сжатия двигателя (отношения объема цилиндра в НМТ к объему в ВМТ), чтобы предотвратить детонацию с нежелательным влиянием на термический КПД.

Как уже упоминалось, четырехтактный цикл, также известный как цикл Отто по имени его изобретателя Николауса Отто, который построил первый двигатель в 1876 году, обеспечивает рабочий ход на каждые два оборота коленчатого вала.Один из способов увеличить выходную мощность двигателя заданного размера — преобразовать ее в двухтактный цикл (рис. 2), в котором мощность вырабатывается при каждом обороте двигателя.

Рисунок 2. Цикл двухтактного двигателя.

Поскольку этот режим работы приводит к увеличению выходной мощности — хотя и не до двойного уровня, ожидаемого из простых расчетов, — он широко используется в мотоциклах, легковых автомобилях и морских судах с искровым зажиганием и дизельными двигателями.Дополнительным преимуществом является простая конструкция двухтактных двигателей, поскольку они могут работать с боковыми отверстиями в гильзе, закрытыми и открытыми движением поршня, вместо громоздкой и сложной конструкции верхнего кулачка.

В двухтактном цикле такт сжатия , начинается после того, как впускные и выпускные боковые порты закрываются поршнем; топливно-воздушная смесь сжимается, а затем воспламеняется свечой зажигания, аналогично зажиганию в четырехтактном бензиновом двигателе, чтобы инициировать сгорание около ВМТ.В то же время свежий заряд может попасть в картер перед его последующим сжатием движущимся вниз поршнем во время хода мощности или хода расширения . В этот период сгоревшие газы толкают поршень, пока он не достигнет НМТ, что позволяет открыть сначала выпускные отверстия, а затем впускные (переходные) отверстия. Открытие выпускных отверстий позволяет сгоревшим газам выходить из цилиндра, в то время как частично в то же время свежий заряд, сжатый в картере, входит в цилиндр через правильно ориентированные перекачивающие каналы.

Перекрытие тактов впуска и выпуска в двухтактных двигателях является причиной того, что часть свежего заряда вытекает непосредственно из цилиндра во время процесса продувки. Несмотря на различные попытки уменьшить масштаб этой проблемы путем введения дефлектора в поршень (рис. 2) и направления входящего заряда от места расположения выпускных отверстий, эффективность зарядки в обычных двухтактных двигателях остается относительно низкой. Решение этой проблемы состоит в том, чтобы подавать топливо непосредственно в цилиндр, отдельно от свежего воздуха, через форсунки с подачей воздуха в период, когда и выпускной, и перекачивающий каналы закрыты.Несмотря на короткий период, доступный для перемешивания, распылители с подачей воздуха могут создавать однородную обедненную смесь во время воспламенения за счет образования капель бензина со средним диаметром менее 40 мкм, которые очень легко испаряются во время такта сжатия.

Среди различных типов двигателей внутреннего сгорания дизельный двигатель или двигатель с воспламенением от сжатия славится своим высоким КПД, пониженным расходом топлива и относительно низкими общими выбросами газов. Его название происходит от немецкого инженера Рудольфа Дизеля (1858-1913), который в 1892 году описал в своем патенте вид двигателя внутреннего сгорания, который не требует внешнего источника воспламенения и в котором сгорание инициируется самовоспламенением жидкого топлива, впрыскиваемого в него. воздух с высокой температурой и давлением в конце такта сжатия.

Преимущества, присущие дизельному двигателю с точки зрения эффективности, обусловлены его обедненной общей смесью, высокими степенями сжатия двигателя, обеспечиваемыми из-за отсутствия воспламенения (детонации) отходящих газов и более высоких степеней расширения. Как следствие, дизельные двигатели в двухтактной или четырехтактной конфигурации традиционно были предпочтительными силовыми установками для коммерческих применений, таких как корабли / катера, энергогенераторы, локомотивы и гусеницы, и в течение последних 20 лет или около того. , легковые автомобили, особенно в Европе.

Недостаток низкой выходной мощности дизельных двигателей был устранен за счет использования нагнетателей или турбонагнетателей, которые увеличивают отношение мощности к массе двигателя за счет увеличения плотности воздуха на входе. Ожидается, что турбокомпрессоры станут стандартными компонентами всех будущих дизельных двигателей независимо от области применения.

Работа дизельного двигателя отличается от двигателя с искровым зажиганием, главным образом, тем, как смесь образуется перед сгоранием.Только воздух вводится в двигатель через винтовой или направленный канал, и топливо смешивается с воздухом во время такта сжатия после его впрыска под высоким давлением в форкамерный дизельный двигатель с непрямым впрыском или IDI) или в главную камеру (дизельное топливо с прямым впрыском. или DI) непосредственно перед началом горения.

Необходимость в достижении хорошего смешивания топлива и воздуха в дизельных двигателях удовлетворяется за счет систем впрыска топлива под высоким давлением, которые образуют капли со средним диаметром около 40 мкм. В легковых автомобилях системы впрыска топлива состоят из роторного насоса, нагнетательных трубок и форсунок топливных форсунок, конструкция которых различается в зависимости от области применения; В дизельных двигателях с прямым впрыском используются форсунки с отверстиями, в то время как в дизелях с непрямым впрыском используются форсунки игольчатого типа.В более крупных дизельных двигателях используются насосы с рядным впрыском топлива, насос-форсунки (насос и форсунка, объединенные в один блок) или отдельные одноствольные насосы, которые устанавливаются рядом с каждым цилиндром.

За последние 20 лет или около того осознание того, что ресурсы сырой нефти ограничены и что окружающая среда, в которой мы живем, становится все более и более загрязненной, побудило правительства принять законы, ограничивающие уровней выбросов выхлопных газов автомобилей и двигатели всех типов. С момента их введения в Японии и США в конце 60-х годов и в Европе в 1970 году нормы выбросов постоянно становятся все более строгими, и производители двигателей сталкиваются с самой серьезной проблемой, связанной со стандартами, согласованными на 1996 год и позднее, которые кратко изложены для легковых автомобилей в таблице. 1.Ожидается, что новые стандарты, которые будут введены в Европе в 2000 году, будут еще ниже, после калифорнийских уровней, которые требуют нулевых уровней выбросов на рубеже веков. Однако неясно, будут ли существующие двигатели соответствовать этим ограничениям, несмотря на отчаянные попытки инженеров по всему миру.

Таблица 1. Европейские стандарты выбросов на 1996 год

Рисунок 3. Модель трехкомпонентного каталитического нейтрализатора.

Из таблицы 1 видно, что основными загрязнителями в двигателях с искровым зажиганием являются углеводороды (HC), монооксид углерода (CO) и оксиды азота (NO x = NO + NO 2 ) в дизельных двигателях. , NO x и твердые частицы, состоящие из частиц сажи, образующихся при сгорании смазочного масла и углеводородов, являются наиболее вредными.

В настоящее время трехкомпонентные катализаторы, которые являются стандартным компонентом современных легковых автомобилей, оснащенных двигателем с искровым зажиганием, работающим на неэтилированном бензине, позволяют примерно на 90% снизить выбросы HC, CO и NO x за счет их преобразования в двуокись углерода ( CO 2 ), вода (H 2 O) и N 2 .

К сожалению, эти катализаторы требуют стехиометрической (соотношение воздух-топливо ~ 14,5) работы двигателя, что нежелательно как с точки зрения расхода топлива, так и с точки зрения выбросов CO 2 .Альтернативным подходом является концепция сжигания обедненной смеси, которая обещает одновременное снижение расхода топлива и выбросов выхлопных газов за счет удовлетворительного сжигания бедных смесей с соотношением воздух-топливо, намного превышающим 20. Ожидается, что разработка катализаторов сжигания обедненной смеси с эффективностью преобразования более 60% может позволить двигателям сжигания обедненной смеси соответствовать будущему законодательству по выбросам; это область активных исследований как в промышленности, так и в академических кругах. С другой стороны, новые дизельные двигатели зависят от двухкомпонентных или окислительных катализаторов для уменьшения количества твердых частиц в выхлопных газах за счет преобразования углеводородов в CO 2 и H 2 O, а также от рециркуляции выхлопных газов и замедленного времени впрыска для снижения NO. x уровней.

ССЫЛКИ

Аркуманис, К. (Ред.) (1988) Двигатели внутреннего сгорания . Академическая пресса.

Блэр, Г. П. (1990) Базовая конструкция двухтактных двигателей . Общество Автомобильных Инженеров.

Фергюсон, К. Р. (1986) Двигатели внутреннего сгорания . Джон Вили и сыновья.

Хейвуд, Дж. Б. (1988) Основы двигателя внутреннего сгорания . Макгроу Хилл.

Стоун Р. (1992) Введение в двигатели внутреннего сгорания .Macmillan Education Ltd. 2-е изд.

Уивинг, Дж. Х. (ред.) (1990) Техника внутреннего сгорания: Наука и технологии . Прикладная наука Elsevier.

Двигатель внутреннего сгорания | Engineering

Двигатель внутреннего сгорания — это тепловой двигатель, в котором сгорание происходит в замкнутом пространстве, называемом камерой сгорания. Сгорание топлива создает газы с высокой температурой / давлением, которые могут расширяться. Расширяющиеся газы используются для непосредственного перемещения поршня, лопаток турбины, ротора (ов) или самого двигателя, выполняя полезную работу.

Двигатели внутреннего сгорания могут работать на любом топливе, которое может сочетаться с «окислителем» в камере.

Напротив, двигатель внешнего сгорания, такой как паровой двигатель, действительно работает, когда в процессе сгорания нагревается отдельная рабочая жидкость, такая как вода или пар, который, в свою очередь, работает.

Реактивные двигатели, большинство ракет и многие газовые турбины строго классифицируются как двигатели внутреннего сгорания, но термин двигатель внутреннего сгорания также используется для обозначения поршневых двигателей, двигателей Ванкеля и аналогичных конструкций, в которых сгорание является прерывистым.

Сегодня двигатель внутреннего сгорания сокращается до аббревиатуры ICE.

Четырехтактный цикл (или цикл Отто)

Без сжатия [править | править источник]

Леонардо да Винчи [1] в 1509 году и Христиан Гюйгенс [2] в 1673 году описали двигатели постоянного давления. (Описание Леонардо не может подразумевать, что идея исходила от него или что она действительно была сконструирована.)

Непрямое внутреннее сгорание или принцип всасывания может не соответствовать определению двигателя, потому что процесс не повторяется.

Первые двигатели внутреннего сгорания использовались для питания сельскохозяйственного оборудования.

Английский изобретатель сэр Сэмюэл Морланд [3] использовал порох [4] для привода водяных насосов в 17 веке. В 1794 году Роберт Стрит построил двигатель без сжатия, принцип работы которого будет доминировать почти столетие.

Первый двигатель внутреннего сгорания, который будет применяться в промышленности, был запатентован Самуэлем Брауном в 1823 году. Он был основан на том, что Харденберг называет «циклом Леонардо», который, как следует из этого названия, к тому времени уже был устаревшим.Как и сегодня, раннее крупное финансирование в области, где стандарты еще не были установлены, досталось лучшим шоуменам раньше, чем лучшим работникам. Итальянцы Эухенио Барсанти [5] и Феличе Маттеуччи [6] запатентовали первый работающий, эффективный двигатель внутреннего сгорания в 1854 году в Лондоне (номер детали 1072), но не начали его производство. Он был похож по концепции на успешный двигатель непрямого действия Отто Лангена, но не так хорошо проработан в деталях.

В 1860 году Этьен Ленуар [7] (1822-1900) создал газовый двигатель внутреннего сгорания, внешне не отличающийся от парового двигателя.Он очень напоминал горизонтальный паровой двигатель двойного действия с цилиндрами, поршнями, шатунами и маховиком, в котором газ по существу заменял пар. Это был первый серийный двигатель внутреннего сгорания. Американец Сэмюэл Мори [8] получил патент 1 апреля 1826 г. на «газовый или паровой двигатель».

Его первый (1862 год) двигатель со сжатием, разошедшийся на части, Николаус Отто [9] разработал двигатель непрямого действия со свободным поршнем без сжатия, более высокая эффективность которого завоевала поддержку Лангена, а затем и большей части рынка, который в то время, в основном предназначался для небольших стационарных двигателей, работающих на газовом топливе.В 1870 году в Вене Зигфрид Маркус [10] поставил на ручную тележку первый передвижной бензиновый двигатель.

Сжатие [править | править источник]

Наиболее существенное различие между современными двигателями внутреннего сгорания и ранними конструкциями заключается в использовании сжатия, в частности сжатия в цилиндре. Термодинамическая теория идеализированных тепловых двигателей была основана Николя Леонардом Сади Карно [11] во Франции в 1824 году. Это научно установило необходимость сжатия для увеличения разницы между верхней и нижней рабочими температурами, но неясно, были ли разработчики двигателей знали об этом до того, как сжатие уже стало широко использоваться.Фактически, это могло ввести в заблуждение дизайнеров, которые пытались подражать циклу Карно бесполезными способами.

Первым зарегистрированным предложением компрессии в цилиндре был патент, выданный Уильяму Барнету (англ.) В 1838 году. Он, очевидно, не осознавал его преимуществ, но его цикл был бы большим достижением, если бы был достаточно развит.

Отто, работая с Готлибом Даймлером [12] и Вильгельмом Майбахом [13] в 1870-х годах, разработал практический четырехтактный двигатель (цикл Отто).Немецкие суды, однако, не удержали его патент на все двигатели с цилиндрическим компрессором или даже на четырехтактный цикл, и после этого решения внутрицилиндровое сжатие стало универсальным.

Двигатели внутреннего сгорания чаще всего используются в мобильных силовых установках. В мобильных сценариях внутреннее сгорание является преимуществом, поскольку оно может обеспечить высокое соотношение мощности к весу вместе с превосходной удельной топливной энергией. Эти двигатели используются почти во всех автомобилях, мотоциклах, многих лодках, а также в самых разных самолетах и ​​локомотивах.Там, где требуется очень большая мощность, например, реактивные самолеты, вертолеты и большие корабли, они появляются в основном в виде газовых турбин. Они также используются в электрических генераторах и в промышленности.

Для маломощных мобильных и многих немобильных приложений электродвигатель является конкурентоспособной альтернативой. В будущем электродвигатели также могут стать конкурентоспособными для большинства мобильных приложений. Однако высокая стоимость, вес и низкая удельная энергия батарей PbA и даже NiMH, а также отсутствие доступных по цене бортовых электрических генераторов, таких как топливные элементы, в значительной степени ограничивают их использование в специализированных приложениях.Однако последние достижения в области легких литий-ионных и литий-полимерных аккумуляторов позволили довести безопасность, удельную мощность, срок службы и стоимость до приемлемых или даже желаемых уровней. Например, недавно аккумуляторные электромобили начали демонстрировать дальность действия 300 миль на литии, теперь улучшенная мощность делает их привлекательными для подключаемых к сети гибридных электромобилей, запас хода на которых менее критичен, поскольку внутреннее сгорание составляет , неограниченный диапазон .

Все двигатели внутреннего сгорания зависят от экзотермического химического процесса сгорания: реакции топлива, обычно с воздухом, хотя могут использоваться другие окислители, такие как закись азота.См. Также стехиометрию [14].

Наиболее распространенные виды топлива, используемые сегодня, состоят из углеводородов и получают из нефти. К ним относятся топливо, известное как дизельное топливо, бензин и сжиженный нефтяной газ. Большинство двигателей внутреннего сгорания, разработанных для бензина, могут работать на природном газе или сжиженном нефтяном газе без каких-либо модификаций, за исключением компонентов подачи топлива. Также можно использовать жидкое и газообразное биотопливо соответствующего состава.

Некоторые предполагают, что в будущем водород может заменить такое топливо.Кроме того, с внедрением технологии водородных топливных элементов использование двигателей внутреннего сгорания может быть прекращено. Преимущество водорода в том, что при его сгорании образуется только вода. Это не похоже на сжигание углеводородов, при котором также образуется двуокись углерода, основная причина глобального потепления, а также окись углерода в результате неполного сгорания. Большим недостатком водорода во многих ситуациях является его хранение. Жидкий водород имеет чрезвычайно низкую плотность — в 14 раз меньше, чем вода, и требует обширной изоляции, в то время как газообразный водород требует очень тяжелых резервуаров.Хотя водород легкий и поэтому имеет более высокую удельную энергию, объемный КПД все же примерно в пять раз ниже, чем у бензина. Вот почему водород необходимо сжимать, чтобы сохранить полезное количество энергии.

Все двигатели внутреннего сгорания должны иметь средства зажигания, способствующие сгоранию. В большинстве двигателей используется электрическая система зажигания или система зажигания с подогревом от сжатия. В системах электрического зажигания обычно используются свинцово-кислотная батарея и индукционная катушка, которые создают электрическую искру высокого напряжения для воспламенения топливовоздушной смеси в цилиндрах двигателя.Эту батарею можно заряжать во время работы с помощью генератора , , приводимого от двигателя. Системы зажигания с компрессионным нагревом (дизельные двигатели и двигатели HCCI) полагаются на тепло, создаваемое в воздухе за счет сжатия в цилиндрах двигателя, для воспламенения топлива.

После успешного воспламенения и сгорания продукты сгорания (горячие газы) имеют больше доступной энергии, чем исходная сжатая топливно-воздушная смесь (которая имела более высокую химическую энергию). Доступная энергия проявляется в виде высокой температуры и давления, которые могут быть переведены в работу двигателем.В поршневом двигателе газы продукта высокого давления внутри цилиндров приводят в движение поршни двигателя.

После того, как доступная энергия удалена, оставшиеся горячие газы удаляются (часто путем открытия клапана или выхода выхлопных газов), что позволяет поршню вернуться в свое предыдущее положение (верхняя мертвая точка — ВМТ). Затем поршень может перейти к следующей фазе своего цикла (который зависит от двигателя). Любое тепло, не переведенное в работу, является отходом и выводится из двигателя с помощью системы воздушного или жидкостного охлаждения.

Иллюстрация нескольких ключевых компонентов типичного четырехтактного двигателя

Детали двигателя различаются в зависимости от типа двигателя. Для четырехтактного двигателя ключевыми частями двигателя являются коленчатый вал (фиолетовый), один или несколько распределительных валов (красный и синий) и клапаны. Для двухтактного двигателя вместо клапанной системы могут быть просто выпускной патрубок и впускное отверстие для топлива. В обоих типах двигателей имеется один или несколько цилиндров (серый и зеленый), и для каждого цилиндра есть свеча зажигания (темно-серый), поршень (желтый) и кривошип (фиолетовый).Одиночный ход поршня вверх или вниз известен как ход, а ход вниз, который происходит непосредственно после воспламенения топливовоздушной смеси в цилиндре, известен как рабочий ход.

Двигатель Ванкеля имеет треугольный ротор, который вращается в эпитроихоидной камере (в форме фигуры 8) вокруг эксцентрикового вала. Четыре фазы работы (впуск, сжатие, мощность, выпуск) происходят в разных местах, а не в одном месте, как в поршневом двигателе.

В двигателе Bourke используется пара поршней, встроенная в кулису, которая передает возвратно-поступательное усилие через специально разработанный подшипниковый узел для поворота кривошипно-шатунного механизма. Впуск, сжатие, мощность и выпуск — все это происходит при каждом такте вилки.

Существует широкий спектр двигателей внутреннего сгорания, соответствующих их многочисленным применениям. Аналогичным образом существует множество способов классификации двигателей внутреннего сгорания, некоторые из которых перечислены ниже.

Хотя термины иногда вызывают путаницу, реальной разницы между «двигателем» и «мотором» нет.«Когда-то слово« двигатель »(от латинского [15], через старофранцузское [16], ingenium ,« способность ») означало любую часть механизма.« Двигатель »(от латинского motor ,» двигатель ») — это любая машина, которая производит механическую энергию. Традиционно электродвигатели не называют« двигателями », но двигатели внутреннего сгорания часто называют« двигателями ».

Принципы работы [править | править источник]

Поршневой:

Поворотный:

Непрерывное горение:

Цикл двигателя

[править | править источник]

Двигатели, основанные на двухтактном цикле, используют два хода (один вверх, один вниз) для каждого рабочего хода.Поскольку нет специальных тактов впуска или выпуска, необходимо использовать альтернативные методы очистки цилиндров. Наиболее распространенный метод в двухтактных двигателях с искровым зажиганием заключается в использовании движения поршня вниз для создания давления свежего заряда в картере, который затем продувается через цилиндр через отверстия в стенках цилиндра. Двухтактные двигатели с искровым зажиганием маленькие и легкие (для их выходной мощности) и очень просты в механическом отношении. Общие области применения включают снегоходы, газонокосилки, цепные пилы, водные мотоциклы, мопеды, подвесные моторы и некоторые мотоциклы.К сожалению, они также, как правило, громче, менее эффективны и загрязняют больше, чем их четырехтактные аналоги, и они плохо масштабируются до больших размеров. Интересно, что самые большие двигатели с воспламенением от сжатия являются двухтактными и используются в некоторых локомотивах и больших кораблях. Эти двигатели используют принудительную индукцию для продувки цилиндров.

Двигатели, основанные на четырехтактном цикле или цикле Отто, имеют один рабочий ход на каждые четыре хода (вверх-вниз-вверх-вниз) и используются в автомобилях, больших лодках и многих легких самолетах.Как правило, они тише, эффективнее и крупнее своих двухтактных собратьев. Есть несколько разновидностей этих циклов, в первую очередь циклы Аткинсона и Миллера. В большинстве дизельных двигателей грузовиков и автомобилей используется четырехтактный цикл, но с системой зажигания с подогревом от сжатия можно отдельно говорить о дизельном цикле. Двигатель Ванкеля работает с тем же разделением фаз, что и четырехтактный двигатель (но без ходов поршня, правильнее было бы назвать четырехфазным двигателем), поскольку фазы находятся в разных местах двигателя; однако, как и двухтактный поршневой двигатель, он обеспечивает один «ход» мощности на оборот на ротор, что дает ему такую ​​же пространственную и весовую эффективность.Фаза сгорания в цикле Бурка более точно соответствует сгоранию с постоянным объемом, чем четырехтактный или двухтактный цикл. В нем также используется меньше движущихся частей, поэтому необходимо преодолевать меньшее трение, чем в двух других типах возвратно-поступательного движения. Кроме того, его более высокий коэффициент расширения также означает, что используется больше тепла от его фазы сгорания, чем используется в четырехтактных или двухтактных циклах.

Типы топлива и окислителя [править | править источник]

Используемые виды топлива включают бензин (британский термин: бензин), сжиженный нефтяной газ, испаренный нефтяной газ, сжатый природный газ, водород, дизельное топливо, JP18 (реактивное топливо), свалочный газ, биодизель, арахисовое масло, этанол, метанол (метил или древесный алкоголь).Даже псевдоожиженные металлические порошки и взрывчатые вещества нашли применение. Двигатели, в которых в качестве топлива используются газы, называются газовыми двигателями, а двигатели, в которых используются жидкие углеводороды, называются масляными двигателями. Однако, к сожалению, бензиновые двигатели также часто называют «газовыми двигателями».

Основные ограничения для топлива заключаются в том, что топливо должно легко транспортироваться через топливную систему в камеру сгорания, и что топливо выделяет достаточно энергии в виде тепла при сгорании, чтобы можно было использовать двигатель на практике.

Окислителем обычно является воздух, и его преимущество заключается в том, что он не хранится в транспортном средстве, что увеличивает удельную мощность. Однако воздух можно сжимать и переносить на борту транспортного средства. Некоторые подводные лодки предназначены для перевозки чистого кислорода или перекиси водорода, что делает их независимыми от воздуха. Некоторые гоночные автомобили содержат закись азота в качестве окислителя. Другие химические вещества, такие как хлор или фтор, нашли экспериментальное применение; но в основном непрактичны.

Дизельные двигатели обычно тяжелее, шумнее и мощнее на более низких оборотах, чем бензиновые двигатели.Они также более экономичны в большинстве случаев и используются в тяжелых дорожных транспортных средствах, некоторых автомобилях (в большей степени из-за их более высокой топливной эффективности по сравнению с бензиновыми двигателями), кораблях и некоторых локомотивах и легких самолетах. Бензиновые двигатели используются в большинстве других дорожных транспортных средств, включая большинство автомобилей, мотоциклов и мопедов. Обратите внимание, что в Европе сложные автомобили с дизельным двигателем стали довольно распространенными с 1990-х годов, составляя около 40% рынка. И бензиновые, и дизельные двигатели производят значительные выбросы.Есть также двигатели, работающие на водороде, метаноле, этаноле, сжиженном нефтяном газе (СНГ) и биодизеле. Парафиновые двигатели и двигатели с испарительным маслом для тракторов (TVO) больше не используются.

Цилиндры

[править | править источник]

Двигатели внутреннего сгорания могут содержать любое количество цилиндров, обычно с номерами от одного до двенадцати, хотя было использовано целых 28 цилиндров. Наличие большего количества цилиндров в двигателе дает два потенциальных преимущества: Первое. двигатель может иметь больший рабочий объем с меньшими индивидуальными возвратно-поступательными массами (то есть масса каждого поршня может быть меньше), что обеспечивает более плавную работу двигателя (поскольку двигатель имеет тенденцию вибрировать в результате движения поршней вверх и вниз).Во-вторых, с большим рабочим объемом и большим количеством поршней может быть сожжено больше топлива, и может быть больше событий сгорания (то есть больше рабочих ходов) в заданный период времени, что означает, что такой двигатель может генерировать больший крутящий момент, чем аналогичный двигатель. с меньшим количеством цилиндров. Недостатком большего количества поршней является то, что в целом двигатель будет иметь больший вес и иметь тенденцию создавать большее внутреннее трение, поскольку большее количество поршней трутся о внутреннюю часть их цилиндров. Это приводит к снижению топливной экономичности и лишению двигателя части его мощности.Для высокопроизводительных бензиновых двигателей, использующих современные материалы и технологии (например, двигатели, используемые в современных автомобилях), кажется, есть точка разрыва около 10 или 12 цилиндров, после чего добавление цилиндров становится общим ущербом для производительности и эффективности, хотя есть исключения. такие как двигатель W-16 от Volkswagen.

  • Большинство автомобильных двигателей имеют от четырех до восьми цилиндров, некоторые высокопроизводительные автомобили имеют десять, двенадцать или даже шестнадцать, а некоторые очень маленькие легковые и грузовые автомобили имеют два или три цилиндра.В предыдущие годы некоторые довольно большие автомобили, такие как DKW и Saab 92, имели двухцилиндровые двухтактные двигатели.
  • Радиальные авиационные двигатели, ныне устаревшие, имели от пяти до 28 цилиндров. Строка содержит нечетное количество цилиндров, поэтому четное число указывает на двух- или четырехрядный двигатель.
  • Мотоциклы обычно имеют от одного до четырех цилиндров, а в некоторых высокопроизводительных моделях их шесть.
  • Снегоходы обычно имеют два цилиндра. У некоторых более крупных (не обязательно высокопроизводительных, но тоже туристических машин) их четыре.
  • Небольшие портативные приборы, такие как бензопилы, генераторы и бытовые газонокосилки, чаще всего имеют один цилиндр, хотя существуют и двухцилиндровые бензопилы.

Система зажигания [править | править источник]

Двигатели внутреннего сгорания можно классифицировать по системе зажигания. Сегодня в большинстве двигателей используется электрическая или компрессионная система нагрева для зажигания. Однако исторически использовались системы с внешним пламенем и горячими трубами. Никола Тесла получил один из первых патентов на механическую систему зажигания с патентом США « Электрический воспламенитель для газовых двигателей » 16 августа 1898 года.

Топливные системы [править | править источник]

Часто для более простых поршневых двигателей используется карбюратор для подачи топлива в цилиндр. Однако точный контроль количества топлива, подаваемого в двигатель, невозможно.

Более крупные бензиновые двигатели, используемые в автомобилях, в основном перешли на системы впрыска топлива. В двигателях, работающих на сжиженном нефтяном газе, используется смесь систем впрыска топлива и карбюраторов с обратной связью. В дизельных двигателях всегда используется впрыск топлива.

В других двигателях внутреннего сгорания, таких как реактивные двигатели, используются горелки, а в ракетных двигателях используются различные идеи, включая ударные струи, сдвиг газа / жидкости, форсажные камеры и многие другие идеи.

Конфигурация двигателя

[править | править источник]

Двигатели внутреннего сгорания можно классифицировать по их конфигурации, которая влияет на их физические размеры и плавность хода (более плавные двигатели производят меньшую вибрацию). Общие конфигурации включают прямую или линейную конфигурацию, более компактную V-образную конфигурацию и более широкую, но более гладкую плоскую или боксерскую конфигурацию. Авиационные двигатели также могут иметь радиальную конфигурацию, которая обеспечивает более эффективное охлаждение. Также использовались более необычные конфигурации, такие как «H», «U», «X» или «W».

Конфигурации с несколькими коленчатыми валами вовсе не обязательно требуют головки блока цилиндров, но вместо этого могут иметь поршень на каждом конце цилиндра, что называется конструкцией с оппозитным поршнем. Эта конструкция использовалась в дизельном авиационном двигателе Junkers Jumo 205 с двумя коленчатыми валами, по одному на обоих концах одного ряда цилиндров, и, что наиболее заметно, в дизельных двигателях Napier Deltic, в которых использовались три коленчатых вала для обслуживания трех групп двусторонних цилиндров. цилиндры расположены в равностороннем треугольнике с коленчатыми валами по углам.Он также использовался в одноблочных локомотивных двигателях и продолжает использоваться для судовых двигателей, как для тяги, так и для вспомогательных генераторов. Двигатель Gnome Rotary, использовавшийся в нескольких ранних самолетах, имел неподвижный коленчатый вал и ряд радиально расположенных цилиндров, вращающихся вокруг него.

Объем двигателя

[править | править источник]

Рабочий объем двигателя — это рабочий объем поршня двигателя. Обычно он измеряется в литрах или кубических дюймах для двигателей большего размера и в кубических сантиметрах (сокращенно кубических сантиметрах) для двигателей меньшего размера.Двигатели большей мощности обычно более мощные и обеспечивают больший крутящий момент на более низких оборотах, но при этом потребляют больше топлива.

Помимо разработки двигателя с большим количеством цилиндров, есть два способа увеличения мощности двигателя. Первый — удлинить ход, второй — увеличить диаметр поршня. В любом случае может потребоваться дополнительная регулировка подачи топлива в двигатель, чтобы обеспечить оптимальную производительность.

Заявленная мощность двигателя может быть больше вопросом маркетинга, чем инженерии.Morris Minor 1000, Morris 1100 и Austin-Healey Sprite Mark II имели двигатели с одинаковым ходом и диаметром цилиндра в соответствии с их спецификациями и были от одного производителя. Однако в торговой литературе и на значках автомобиля объем двигателя был указан как 1000 куб. См, 1100 куб. См и 1098 куб. См соответственно.

Загрязнение двигателя [править | править источник]

Обычно двигатели внутреннего сгорания, особенно поршневые двигатели внутреннего сгорания, производят умеренно высокие уровни загрязнения из-за неполного сгорания углеродсодержащего топлива, что приводит к образованию оксида углерода и некоторого количества сажи, а также оксидов азота и серы и некоторых несгоревших углеводородов в зависимости от условий эксплуатации и соотношение топливо / воздух.

Дизельные двигатели выделяют широкий спектр загрязняющих веществ, включая аэрозоли из множества мелких частиц, которые, как считается, глубоко проникают в легкие человека.

  • Многие виды топлива содержат серу, которая приводит к образованию оксидов серы (SOx) в выхлопных газах, что способствует кислотным дождям.
  • Высокая температура горения приводит к образованию больших количеств оксидов азота (NOx), которые, как доказано, опасны как для здоровья растений, так и для здоровья животных.
  • Чистое производство углекислого газа не является обязательной характеристикой двигателей, но, поскольку большинство двигателей работают на ископаемом топливе, это обычно происходит.Если двигатели работают на биомассе, то чистый углекислый газ не образуется, поскольку растущие растения поглощают столько же или больше углекислого газа во время роста.
  • Водородные двигатели должны производить только воду, но при использовании воздуха в качестве окислителя также образуются оксиды азота.
  • Певец Чарльз Джозеф; Рэпер, Ричард, История технологии: Двигатель внутреннего сгорания , отредактированный Чарльзом Сингером … [и др.], Clarendon Press, 1954–1978. С. 157–176. [20]
  • Харденберг, Хорст О., Средние века двигателя внутреннего сгорания , Общество автомобильных инженеров (SAE), 1999

Шаблон: Commons

Двигатели внутреннего сгорания | IFPEN

Двигатель внутреннего сгорания автомобиля обычно включает несколько камер сгорания . Каждый из них ограничен головкой блока цилиндров, цилиндром и поршнем.

Архитектура двигателя также шарнирно закреплена вокруг системы коленчатого вала , что позволяет преобразовывать возвратно-поступательное движение (движение поршня) во вращательное движение (вращение коленчатого вала).


Во время каждого цикла сжигание топливной смеси (воздушно-топливной смеси) в камере приводит к увеличению давления газа, который приводит в движение поршень и систему коленчатого вала. Поскольку коленчатый вал соединен с компонентами механической трансмиссии (коробки передач, приводные валы и т. Д.), Его движение приводит в движение колеса автомобиля.

Коробка передач позволяет адаптировать скорость вращения колеса к скорости вращения двигателя.

Мощность двигателя зависит, в первую очередь, от количества энергии, генерируемой при сгорании, а следовательно, от количества топливной смеси, присутствующей в камере сгорания.Таким образом, он напрямую связан с объемом камеры (единичный рабочий объем), количеством камер или цилиндров в двигателе (общий объем) и количеством впрыскиваемого топлива.

Почему «4-х тактный»?

Термин относится к тому факту, что требуется 4 отдельных хода для преобразования химической энергии, содержащейся в топливе, в механическую энергию . Каждый ход соответствует половине оборота коленчатого вала (одно движение поршня вверх или вниз).Такты 1 и 4 предназначены для перекачки газа (забора свежего газа и удаленных выхлопных газов), а такты 2 и 3 необходимы для подготовки к сгоранию с последующим сгоранием и его преобразованием в механическую энергию.

Для двигателя с искровым зажиганием и непрямым впрыском используются следующие 4 такта:

  • 1 ход : Впуск (заполнение цилиндра)
    Поршень опускается и втягивает топливовоздушную смесь.
  • 2 nd ход : Сжатие
    Поршень снова поднимается, сжимая топливно-воздушную смесь. Для воспламенения смеси образуется искра.
  • 3 ряд ход : Сгорание — расширение
    Этот ход соответствует развитию сгорания и расширению сгоревших газов: поршень сжимается, и химическая энергия преобразуется в механическую энергию.
  • 4 -й ход : Выхлоп (Сгоревшие газы выводятся из цилиндра)
    Поршень снова поднимается и удаляет сгоревшие газы.

Для дизельного двигателя с воспламенением от сжатия и прямым впрыском 4 такта работают одинаково, с двумя отличиями:

  • Чистый воздух всасывается и сжимается во время тактов 1 и 2 , затем топливо вводится непосредственно в цилиндр (путем впрыска) в конце сжатия.
  • Смесь самовозгорается без искры из-за высокой температуры воздуха в результате его сжатия.

Цетановое число / октановое число

Цетановое число указывает на способность дизельного топлива самовоспламеняться.

Октановое число указывает на способность бензина противостоять самовоспламенению и предотвращать неконтролируемое возгорание из-за электрической искры (ненормальное горение, детонация).

Что такое горение?

Теоретически для полного сгорания 1 г обычного топлива (бензина или дизельного топлива) требуется около 14.6 г воздуха. Эта идеальная смесь называется стехиометрической.

Бензиновые двигатели с непрямым впрыском топлива в основном работают со стехиометрической смесью . После введения в двигатель гомогенной смеси воздуха и бензина сгорание (воспламенение смеси) инициируется искрой (искровое зажигание). Горение вызывает распространение фронта пламени, который проходит через камеру.

Современные бензиновые двигатели с прямым впрыском : воздух поступает через впускное отверстие, а топливо, как в дизельном двигателе, поступает непосредственно в камеру сгорания, что позволяет более точно управлять впрыском.Вместо топливовоздушной смеси двигатель работает на так называемом стратифицированном заряде. Горение по-прежнему инициируется искрой (искровое зажигание).

Дизельные двигатели работают с избытком воздуха . Дизель впрыскивается под давлением в предварительно сжатую воздушную массу. Возгорание инициируется самовоспламенением (воспламенение от сжатия). Сгорание называют расслоенным или неоднородным, поскольку оно происходит как в богатой топливом (расположенной рядом с соплом форсунки), так и в бедной (рядом со стенкой цилиндра) зонах.

Топливо

В Европе используются бензиновые или дизельные двигатели с искровым зажиганием. Бензин и дизельное топливо являются двумя основными конечными продуктами, получаемыми в результате переработки сырой нефти, и их состав меняется в зависимости от требований к двигателям и, что более важно, экологических норм, связанных с качеством воздуха и сокращением выбросов парниковых газов.

Биотопливо можно смешивать непосредственно с бензином и дизельным топливом в различных пропорциях без необходимости адаптации двигателей, тем самым извлекая выгоду из существующих распределительных сетей.Во Франции дизельное топливо B7, продаваемое на заправке, обычно содержит до 7% (по объему) биотоплива и бензина E10 до 10%.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *