Постоянный и симметричный: особенности полного привода Subaru
Если в техническом руководстве встречается фраза Symmetrical All Wheel Drive, то можно не сомневаться, что речь идет об автомобилях Subaru. Симметричный полный привод — своеобразная визитная карточка японской компании. А в 2003 году Symmetrical AWD стал официальным термином. Тем не менее вокруг того, насколько верна формулировка этого «фирменного» технического решения, продолжается полемика. Так что есть смысл в очередной раз вернуться к этой теме.
Станислав Шустицкий
Сначала о симметричности. Первое, на что обращают внимание оппоненты, — это «несимметричный межосевой дифференциал», используемый в одной из схем трансмиссий Subaru. Как же так? Нет симметрии, нет гармонии… На самом деле, говоря о симметрии, инженеры Subaru имеют в виду исключительно симметричность геометрическую. И действительно: горизонтально-оппозитный двигатель Subaru Boxer расположен продольно, длина левой и правой полуосей одинакова… Далее «по списку». Полная симметрия. Если же говорить о трансмиссии с механической коробкой передач, то здесь вообще абсолютно симметричная конструкция полного привода. В связи с этим стоит добавить, что оригинальные компоновочные решения Subaru позволили обеспечить и удачную развесовку автомобилей по осям, и эффективную реализацию характеристик двигателя, и баланс сцепления колес.
Схемы симметричного полного привода модели Subaru Outback…
…и Subaru XV.
Конструкция шасси Subaru WRX STI решена в спортивном ключе.
Теперь о постоянстве того самого полного привода. Как было сказано выше, в арсенале Subaru несколько типов трансмиссий, но самой массовой является автоматическая c бесступенчатой АКП и многодисковой муфтой MP-T (Multi Plate Transfer), управляемой посредством электроники и гидравлики.
На любом типе покрытия благодаря Symmetrical AWD автомобили Subaru демонстрируют отменную управляемость.
Следующая система распределения крутящего момента постоянного полного привода Subaru — VTD (Variable Torque Distribution), используемая в настоящее время на модели WRX. Применяемый здесь несимметричный межосевой дифференциал в обычных условиях распределяет крутящий момент между передней и задней осью в соотношении 45:55. В конструкции трансмиссии также используется муфта блокировки дифференциала. Блокировка межосевого дифференциала штука полезная, но в данном случае она, скорее всего, окажется нужной лишь в какой-то экстремальной ситуации. С 2009 года на всех автомобилях Subaru применяется система курсовой устойчивости VDC (Vehicle Dynamics Control), которая при необходимости успешно выполняет функции муфты блокировки.
Один из примеров симметрии — модель Tribeca.
Пока еще в гамме автомобилей Subaru остается и исчезающий вид — модели с механическими коробками передач. Этот очень неплохой вариант, к большому сожалению, пользуется все меньшим спросом у покупателей. В связи с этим в японской корпорации принято решение постепенно переходить на версии с автоматами. Что касается трансмиссии с механической КП, то в ее конструкции применен симметричный межосевой дифференциал с коническими шестернями, блокируемый с помощью вискомуфты. В обычных дорожных условиях тяга между передними и задними колесами распределяется в пропорции 50:50, но в случае, к примеру, пробуксовки вискомуфта добавит крутящий момент на «отстающие» колеса. Такая трансмиссия наверняка полюбилась тем, кто практикует спортивный стиль езды, но если говорить о спортивной составляющей истории Symmetrical All Wheel Drive, то это, конечно же, трансмиссия модели WRX STI.
Многодисковая муфта MP-T, управляемая гидравликой.
DCCD. Эта аббревиатура означает Driver Controlled Centre Differential и говорит о том, что водитель может принимать непосредственное участие в управлении межосевым дифференциалом. В конструкции трансмиссии модели WRX STI применен несимметричный цилиндрический дифференциал с распределением крутящего момента между передней и задней осью в соотношении 41:59. В схеме DCCD присутствует своеобразный симбиоз электронной и механической блокировок межосевого дифференциала, оперативно реагирующих на изменение крутящего момента. При движении в автоматическом режиме блок управления DCCD получает сигналы с многочисленных датчиков и, следуя некоему суперсекретному алгоритму, оптимально настраивает трансмиссию под конкретные дорожные условия. Но в настройку трансмиссии может вмешаться и водитель: в салоне есть соответствующий регулятор, позволяющий изменять степень блокировки электромагнитной муфты.
Понятно, что Symmetrical All Wheel Drive — это не самоцель корпорации Subaru, а важный инструмент, позволяющий сделать автомобили этой марки еще более эффективными и безопасными. А для водителей это еще и возможность получить удовольствие от управления.
Хочу получать самые интересные статьи
Полный привод Subaru
После того как в предыдущих материалах были довольно подробно рассмотрены схемы 4WD, применяемые на Тойотах, обнаружилось, что с другими марками по-прежнему ощущается информационный вакуум.
1 — входной вал, 2 — механизм понижающей передачи, 2 — ведущая шестерня 3-й передачи, 4- ведущая шестерня 4-й передачи, 5 — ведущая шестерня 5-й передачи, 6 — корпус раздаточной коробки, 7 — ведомая шестерня раздаточной коробки, 8 — хвостовик, 9 — ведущая шестерня раздаточной коробки, 10 — межосевой дифференциал, 11 — вязкостная муфта, 12 — передний выходной вал, 13 — вторичный вал коробки передач, 14 — ведомая шестерня 3-й передачи, 15 — ведомая шестерня 2-й передачи, 16 — ведомая шестерня 1-й передачи, 17 — вспомогательная шестерня 1-й передачи, 18 — передний межколесный дифференциал. |
Но не будем отвлекаться. В автоматических трансмиссиях ныне эксплуатируемых Subaru используется два основных типа 4WD.
1.1. Active AWD / Active Torque Split AWD |
Постоянный передний привод, без межосевого дифференциала, подключение задних колес гидромеханической муфтой с электронным управлением
1 — демпфер блокировки гидротрансформатора, 2 — муфта гидротрансформатора, 3 — входной вал, 4 — вал привода масляного насоса, 5 — корпус муфты гидротрансформатора, 6 — масляный насос, 7 — корпус масляного насоса, 8 — корпус КПП, 9 — датчик частоты вращения турбинного колеса, 10 — муфта 4-й передачи, 11 — муфта заднего хода, 12 — тормоз 2-4, 13 — передний планетарный ряд, 14 — муфта 1-й передачи, 15 — задний планетарный ряд, 16 — тормоз 1-й передачи и заднего хода, 17 — выходной вал КПП, 18 — шестерня режима «P», 19 — ведущая шестерня переднего привода, 20 — датчик частоты вращения заднего выходного вала, 21 — задний выходной вал, 22 — хвостовик, 23 — муфта A-AWD, 24 — ведомая шестерня переднего привода, 25 — обгонная муфта, 26 — блок клапанов, 27 — поддон, 28 — передний выходной вал, 29 — гипоидная передача, 30 — насосное колесо, 31 — статор, 32 — турбина. |
Этот вариант издавна устанавливается на подавляющее большинство Subaru (с АКПП типа TZ1) и широко известен еще по Legacy образца 89 года. По сути, этот полный привод такой же «честный», как и свежий тойотовский Active Torque Control — те же самые подключаемые задние колеса и тот же самый принцип TOD (Torque on Demand). Межосевого дифференциала нет, а задний привод включается гидромеханической муфтой (пакет фрикционов) в раздаточной коробке.
Субаровская схема имеет некоторые преимущества в рабочем алгоритме перед другими типами подключаемого 4WD (особенно простейшими, вроде примитивного V-Flex). Пусть и небольшой, но момент при работе A-AWD передается назад постоянно (если только система не отключена принудительно), а не только при пробуксовке передних колес — это полезнее и эффективнее. Благодаря гидромеханике перераспределять усилие можно немного точнее, нежели в электромеханическом ATC. Кроме того, A-AWD конструктивно долговечнее. У машин с вискомуфтой подключения задних колес существует опасность резкого самопроизвольного «появления» заднего привода в повороте с последующим неуправляемым «полетом», но у A-AWD такая вероятность хоть и не исключена полностью, но значительно снижена. Однако с возрастом, по мере износа, предсказуемость и плавность подключения задних колес существенно уменьшается.
Алгоритм работы системы сохраняется прежним в течение всего времени выпуска, лишь немного корректируясь.
1) В нормальных условиях, при полностью отпущенной педали акселератора распределение момента между передними и задними колесами составляет 95/5..90/10.
2) По мере нажатия на газ, подводимое к пакету фрикционов давление начинает увеличиваться, диски постепенно поджимаются и распределение момента начинает смещаться в сторону 80/20…70/30… и т.д. Зависимость между газом и давлением в магистрали отнюдь не линейная, а выглядит скорее как парабола — чтобы значительное перераспределение происходило только при сильном нажатии педали. При полностью утопленной педали фрикционы поджимаются максимальным усилием и распределение доходит до 60/40…55/45. Буквально «50/50» в данной схеме не достигается — это не жесткая блокировка.
3) Кроме того, установленные на коробке датчики частоты вращения переднего и заднего выходных валов позволяют определить пробуксовку передних колес, после чего максимальная часть момента отбирается назад независимо от степени дачи газа (кроме случая полностью отпущенного акселератора). Эта функция действует на малых скоростях, примерно до 60 км/ч.
4) При принудительном включении 1-й передачи (селектором), фрикционы сразу поджимаются максимально возможным давлением — таким образом как бы определяются «сложные вседорожные условия» и привод сохраняется самым «постоянно полным».
5) При воткнутом в разъем предохранителе «FWD» повышенное давление к муфте не подводится и привод постоянно осуществляется только на передние колеса (распределение «100/0»).
6) По мере развития автомобильной электроники пробуксовки стало удобнее контролировать по штатным датчикам ABS и уменьшать степень блокировки муфты при прохождении поворотов или срабатывании ABS.
Следует обратить внимание, что все паспортные распределения моментов даются только в статике — при ускорениях/замедлениях развесовка по осям меняется, поэтому реальные моменты на осях получаются другими (иногда «очень другими»), точно также как и при разном коэффициенте сцепления колес с дорогой.
Модель |
Модификации |
Impreza |
кроме 2.0T WRX |
Forester |
SF5A52..53 2.0T, SF5B53 2.0T, SF5C53 2.0T (P#,V#,H#,I#), SF5A56 2.0, SF5B56..57 2.0, SF5C56..57 2.0, SF5A55 2.0T (T/tb до 09.98), SF9B58 2.5, SF9C58 2.5 |
Legacy |
BE5 2. 0, BE9 2.5, BH5 2.0, BH9 2.5 (P#,C#,M#,K#) |
Постоянный полный привод, с межосевым дифференциалом, блокировка гидромеханической муфтой с электронным управлением
1 — демпфер блокировки гидротрансформатора, 2 — муфта гидротрансформатора, 3 — входной вал, 4 — вал привода масляного насоса, 5 — корпус муфты гидротрансформатора, 6 — масляный насос, 7 — корпус масляного насоса, 8 — корпус КПП, 9 — датчик частоты вращения турбинного колеса, 10 — муфта 4-й передачи, 11 — муфта заднего хода, 12 — тормоз 2-4, 13 — передний планетарный ряд, 14 — муфта 1-й передачи, 15 — задний планетарный ряд, 16 — тормоз 1-й передачи и заднего хода, 17 — промежуточный вал, 18 — шестерня режима «P», 19 — ведущая шестерня переднего привода, 20 — датчик частоты вращения заднего выходного вала, 21 — задний выходной вал, 22 — хвостовик, 23 — межосевой дифференциал, 24 — муфта блокировки межосевого дифференциала, 25 — ведомая шестерня переднего привода, 26 — обгонная муфта, 27 — блок клапанов, 28 — поддон, 29 — передний выходной вал, 30 — гипоидная передача, 31 — насосное колесо, 32 — статор, 33 — турбина. |
Схема VTD (Variable Torque Distribution) применяется на менее массовых версиях с автоматическими коробками типа TV1 (и TZ102Y, в случае Impreza WRX GF8) — как правило, наиболее мощных в гамме. Здесь с «честностью» все в порядке — полный привод действительно постоянный, с несимметричным межосевым дифференциалом (45:55), блокирующимся гидромеханической муфтой с электронным управлением. Кстати, по такому же принципу работал еще с середины 80-х годов тойотовский 4WD на коробках A241H и A540H, но сейчас, увы, он остался только на исходно-заднеприводных моделях (полный привод типа FullTime-H или i-Four).
К VTD Subaru обычно прилагает достаточно продвинутую систему VDC (Vehicle Dynamic Control), по-нашему — систему курсовой устойчивости или стабилизации. При старте ее составная часть, TCS (Traction Control System), подтормаживает буксующее колесо и слегка придушивает двигатель (во-первых, углом опережения зажигания, во-вторых, даже отключением части форсунок). На ходу работает классическая динамическая стабилизация. Ну и благодаря возможности произвольно тормозить любое из колес, VDC эмулирует (имитирует) блокировку межколесного дифференциала. Конечно, это здорово, но не стоит серьезно полагаться на возможности такой системы — пока что ни у одного из автопроизводителей не получилось даже приблизить «электронную блокировку» к традиционной механике по надежности и, главное, эффективности.
Модель |
Модификации |
Impreza |
GF8C58..GF8F58 2.0T (WRX), GGAA58T..GGAB58T 2.0T (WRX) |
Forester |
SF5B55 2.0T (T/tb с 09.98), SF5C53 (U#,J# — S/tb с 01. 2000) |
Legacy |
BE5 2.0T, BH5 2.0T, BH9 2.5 (A#,D#,F#,3#), BHE 3.0 |
Постоянный передний привод, без межосевого дифференциала, подключение задних колес вискомуфтой
Вероятно, стоит упомянуть и про 4WD, применяемый на малых моделях с вариаторными коробками (вроде Vivio и Pleo). Здесь схема еще проще — постоянный передний привод и «подключаемый» вискомуфтой при пробуксовке передних колес задний мост.
Мы уже говорили, что в английском языке под понятие LSD попадают все самоблокирующиеся дифференциалы, однако в нашей традиции так обычно называют систему с вискомуфтой. Но Subaru использовала на своих машинах целую гамму LSD-дифференциалов разных конструкций…
2.1. Вязкостный LSD старого образца
В LSD-дифференциале правая и левая полусевые шестерни «соединяются» через вискомуфту — правый шлицевой вал проходит сквозь чашку и зацепляется со ступицей муфты (сателлиты дифференциала установлены консольно). Корпус муфты представляет одно целое с шестерней левой полуоси. В полости, заполненной силиконовой жидкостью и воздухом, на шлицах ступицы и корпуса стоят диски — внешние удерживаются на месте распорными кольцами, внутренние способны слегка перемещаться вдоль оси (для возможности получения «хамп-эффекта»). Муфта срабатывает непосредственно на разницу в частоте вращения между правой и левой полуосями.
Во время прямолинейного движения правое и левое колеса вращаются с одинаковой скоростью, чашка дифференциала и полуосевые шестерни перемещаются вместе и момент поровну делится между полуосями. При возникновении разницы в частоте вращения колес, корпус и ступица с закрепленными на них дисками перемещаются друг относительно друга, что вызывает появление силы трения в силиконовой жидкости. Благодаря этому в теории (только в теории) должно происходить перераспределение крутящего момента между колесами.
Нормальное движение | Пробуксовка левого колеса |
2.2. Вязкостный LSD нового образца
Область применения (на моделях внутренего рынка):
— Impreza WRX МКПП до 1997
— Forester SF, SG (кроме версий FullTime VTD + VDC)
— Legacy 2.0T, 2.5 (кроме версий FullTime VTD + VDC)
Рабочая жидкость — трансмиссионное масло класса API GL-5, вязкость по SAE 75W-90, емкость ~0.8 / 1.1 л.
Нормальное движение | Пробуксовка левого колеса |
2.3. Фрикционный LSD
Следующий по очереди появления — фрикционный механический дифференциал, применяемый на большей части версий Impreza STi с середины 90-ых. Принцип его действия еще проще — полуосевые шестерни имеют минимальный осевой люфт, между ними и корпусом дифференциала установлен набор шайб. При появлении разницы в частоте вращения между колесами дифференциал срабатывает как любой свободный. Сателлиты начинают вращаться, при этом возникает нагрузка на шестерни полуосей, осевая составляющая которой поджимает пакет шайб и дифференциал частично блокируется.
Область применения (на моделях внутренего рынка):
— Impreza STi
Рабочая жидкость — трансмиссионное масло для LSD-дифференциалов, это единственный из дифференциалов Subaru, в который заливается специальное масло (в оригинале «Subaru LSD oil»), поскольку фрикционные диски и шестерни работают в общем картере.
2.4. Кулачковый LSD (SURETRAC)
Фрикционный дифференциал кулачкового типа впервые был применен Subaru в 1996 году на турбо-импрезах, затем он появился и на версиях Forester STi. Принцип его действия большинству хорошо знаком еще по нашим классическим грузовикам, «шишигам» и «уазикам».
Жесткой связи между ведущей шестерней дифференциала и полуосями здесь фактически нет, разность в угловой скорости вращения обеспечивается проскальзыванием одной полуоси относительно другой. Сепаратор вращается вместе с корпусом дифференциала, закрепленные на сепараторе шпонки (или «сухари») могут перемещаться в поперечном направлении. Выступы и впадины кулачковых валов вместе со шпонками образуют передачу вращения, наподобие цепной.
1 — сепаратор, 2 — направляющие кулачки, 3 — упорный подшипник, 4 — корпус дифференциала, 5 — шайба, 6 — ступица. |
Область применения (на моделях внутренего рынка):
— Impreza WRX после 1996
— Forester STi
Рабочая жидкость — обычное трансмиссионное масло класса API GL-5, вязкость по SAE 75W-90, емкость ~0.8 л.
Евгений
Москва
[email protected]
© Легион-Автодата
Самый полный привод — ДРАЙВ
Этот материал мы задумывали как типичный «ликбез» из серии «Всё, что вы хотели знать о полном приводе, но не знали, у кого спросить». Чем дифференциальный привод отличается от подключаемого с помощью вискомуфт или агрегатов типа Haldex, для чего нужны самоблокирующиеся дифференциалы… Но чем больше мы изучали историческую сторону вопроса, тем больше удивлялись. Оказывается, первый легковой автомобиль с постоянным полным приводом был сделан в Голландии ещё сто лет назад! А в 1935 году, например, полноприводный американский гоночный автомобиль чуть было не спас человечество от Второй мировой войны. ..
Зачем легковому автомобилю полный привод? Сейчас, в начале XXI века, этот вопрос кажется риторическим. Конечно же, для лучшей реализации тяговых сил двигателя. Для того чтобы колёса при разгоне на скользком покрытии как можно меньше буксовали вхолостую. Четыре ведущих колеса лучше, чем два! Но человечество долго постигало эту азбучную истину. Спросите любого автознатока — и он вам ответит, что эра полного привода на массовых легковых автомобилях началась только в 1980-м с появлением Audi Quattro. Назовёт он и редких предшественников — например, английский суперкар Jensen FF 1966 года и Subaru Leone 4WD 1972 года. Впрочем, настоящий знаток тут же оговорится: первые полноприводные автомобили Subaru не имели постоянного полного привода — он был подключаемым. А это, как говорят в Одессе, две большие разницы.
Паллиатив
Подключаемый привод на одну из пар колёс — решение на легковых автомобилях паллиативное. Такую трансмиссию в англоязычном мире часто называют Part-Time 4WD, «временный полный привод», и пришла она из мира внедорожников и грузовой техники повышенной проходимости. Такой автомобиль, у которого одна из осей постоянно ведущая, а другая жёстко подключается в случае необходимости, способен проявить свои полноприводные качества только на время преодоления бездорожья. А для движения по дорогам с твёрдым покрытием жёсткий полный привод приходится отключать. Почему? Причина — в так называемой циркуляции мощности. Ведь в повороте передние колёса проходят больший путь, двигаясь по дугам большего радиуса, а значит, и вращаются быстрее задних. Причём чем круче поворот, тем разница больше. И на автомобилях с таким типом привода тяга на передних колёсах падает, а на задних — наоборот, растёт. В некоторых случаях тяговый момент может смениться тормозным, то есть передние колёса будут увеличивать сопротивление движению автомобиля. Когда под колёсами грязь или снег, в этом нет ничего страшного — разве что автомобиль станет хуже слушаться руля и пойдёт наружу «плугом» с вывернутыми колёсами.
На этой схеме хорошо видно, что при движении в повороте все колёса катятся по своим траекториям и вынуждены вращаться с разными угловыми скоростями. Поэтому для постоянного полного привода нужны три дифференциала: два межколёсных и один межосевой.
Тем не менее блокированный полный привод на легковых дорожных автомобилях применяли. Правда, это были скорее легковушки повышенной проходимости. Например, в СССР ещё в 1938 году небольшими партиями начали выпускать ГАЗ-61 — полноприводную «эмку» с шестицилиндровым мотором и с подключаемым передним мостом. После войны делали и «внедорожный» вариант «Победы», ГАЗ-М72, и «Москвич»-410 с аналогичной трансмиссией… Да и Subaru Leone 4WD 1972 года, кстати, тоже делали для преодоления внедорожья — клиренс у машин с подключаемым задним мостом был выше, чем у обычных переднеприводных Subaru.
Subaru Leone 4WD Station Wagon (1972–1979) — полноприводная версия переднеприводной машины с подключаемым вручную приводом на задние колёса. Двигатель — объёмом 1,4 л (72 л.с.) или 1,6 л (80 л.с.). Кроме универсала, полным приводом оснащались седан и пикап. До 1989 года на всех полноприводных Subaru привод на задние колёса подключался или вручную (на машинах с механическими коробками), или автоматически — многодисковой фрикционной муфтой (на машинах с «автоматом»).
Итак, на дорогах с твёрдым покрытием, где легковые автомобили проводят большую часть времени, подключаемый привод бесполезен — он лишь утяжеляет автомобиль. Ведь всё это время машине приходится «возить с собой» раздаточную коробку, в которой происходит отбор мощности к «временно ведущей» второй оси, ещё один карданный вал, главную передачу второго моста…
Меж тем превратить «временный» полный привод в постоянный, Full-Time 4WD, очень просто. Нужно лишь добавить в раздаточную коробку межосевой дифференциал.
Постоянный полный
Зачем нужен межосевой дифференциал? Два межколёсных дифференциала, передний и задний, позволяют каждой паре колёс в поворотах вращаться с разными скоростями. А межосевой выполняет эту работу для обоих ведущих мостов. Поэтому автомобиль с тремя дифференциалами легко может двигаться с постоянным полным приводом по любым дорогам!
Элементарно? Меж тем до начала 80-х годов считалось, что постоянный полный привод дорожным автомобилям не нужен. Мол, к чему двигателю на сухом асфальте постоянно вращать вторую пару колёс и соответствующие детали трансмиссии — это и шум, и повышенный расход топлива… И лишь после появления Audi Quattro общественное мнение стало меняться в сторону постоянного полного привода. Ведь тяга двигателя при этом постоянно распределяется не на два, а на все четыре колеса, оставляя больший запас по сцеплению для восприятия боковых сил. И в повороте такой автомобиль оказывается намного более устойчивым при разгоне или при торможении двигателем.
«Рентген» Аudi 80 Quattro второй половины восьмидесятых годов. Хорошо видно, насколько проще и компактней схема quattro, чем трансмиссия Ferguson. Самоблокирующийся дифференциал Torsen используется Audi начиная с 1984 года. В отличие от дифференциала, блокируемого вискомуфтой, Torsen реагирует на изменение крутящего момента, реализуемого колёсами каждой из осей, повышает устойчивость при торможении и позволяет использовать АБС, так как блокируется только под тягой.
Кстати, первыми массовыми автомобилями с межосевыми дифференциалами в трансмиссии считаются Range Rover (1970) и наша «Нива» (1976). Но так как обе эти машины всё-таки принадлежат к внедорожному племени, то лавры первопроходца среди легковушек пожинает Audi Quattro.
А что же конструкторы гоночных автомобилей — неужели они не применили постоянный полный привод раньше? Мы знали, что попытки сделать полноприводные гоночные машины предпринимались и до эпохи Quattro. Например, первым послевоенным проектом Фердинанда Порше был полноприводный гоночный болид Cisitalia 360 среднемоторной компоновки с 12-цилиндровым полуторалитровым двигателем. Но доподлинно известно, что привод на передние колёса у этого чуда техники был отключаемым — гонщик должен был задействовать его только на прямых участках трассы, а перед поворотом вновь переходить на задний привод.
А были ли предшественники у Чизиталии? Оказалось, например, что тот же Фердинанд Порше ещё в 1900 году построил электромобиль с четырьмя ведущими мотор-колёсами. Но настоящий шок у автознатока вызовет гоночный автомобиль голландской фирмы Spyker образца 1902 года. В те дремучие времена, когда даже тормоза делали только на задних колёсах, у этого автомобиля был самый что ни на есть постоянный полный привод — с межосевым дифференциалом!
Голландскую фирму Spyker по выпуску конных экипажей основали в 1880 году братья Спяйкеры (по-фламандски фамилия пишется Spijker). В 1900 году братья выпустили первый автомобиль собственной конструкции, а спустя два года с помощью бельгийского конструктора Жозефа Лявиолета был разработан полноприводный гоночный Spyker 4WD (1902–1907) удивительно прогрессивной конструкции — с тремя дифференциалами! Тормозных механизмов было тоже три — два действовали на задние колёса, а ещё один тормоз был установлен на карданном валу к передним колёсам.
Так что можно смело заявлять, что нынче схема Full-Time 4WD справляет своё столетие… Полноприводных Спайкеров было выпущено немного — они стоили сумасшедших денег и по разным причинам не смогли добиться успеха в гонках. Не намного удачнее оказались и другие полноприводные гоночные автомобили — Bugatti Tipo 53 и Miller FWD начала 30-х годов. Что касается Bugatti, то инициатива принадлежала фиатовскому инженеру Антонио Пикетто, который в 1930 году предложил Этторе Бугатти построить гоночную машину с колёсной формулой 4×4. И в 1932 году были сделаны три полноприводных Bugatti Tipo 53 — с мощными компрессорными трёхсотсильными моторами, с постоянным полным приводом и с тремя дифференциалами.
Полноприводный Bugatti Tipo 53 (1932–1935). Трансмиссия с тремя дифференциалами распределяла тягу 300-сильной компрессорной «восьмёрки» на все четыре колеса. Коробка передач, как обычно на Бугатти, стояла отдельно от двигателя, раздаточная коробка с межосевым дифференциалом составляла с ней одно целое. Приводные валы на передний и задний мосты проходили по левой стороне автомобиля, гонщик сидел справа. Несмотря на рекомендации конструктора переднеприводных машин того времени Альбера Грегуара, в приводе передних колёс Bugatti T53 были использованы не шарниры равных угловых скоростей типа Tracta, а обычные карданные сочленения. Кроме того, для Tipo 53 пришлось использовать нетипичную для Бугатти независимую переднюю подвеску на поперечной рессоре. Всё это привело к повышенным нагрузкам на руль — управлять автомобилем в поворотах было чрезвычайно тяжело, хотя скорости прохождения гравийных виражей были выше, чем у заднеприводных машин того времени. Всего было построено три Bugatti T53, которые выступали в разных гонках до 1935 года.
Интересно, что перед созданием полноприводного Bugatti итальянцы тщательно изучили приобретённый специально под разборку переднеприводный американский гоночный Miller. В свою очередь американец Гарри Миллер заинтересовался затеей Бугатти и тоже решил построить полноприводную версию своего автомобиля, заручившись спонсорством фирмы FWD (Four Wheel Drive — «Четыре ведущих колеса»), выпускавшей грузовики с колёсной формулой 4×4. Так появились полноприводные гоночные болиды Miller FWD.
Американский конструктор Гарри Миллер прославился в 20–30-х годах своими гоночными автомобилями для 500-мильных состязаний на треке в Индианаполисе, а его рядные «восьмёрки» с двумя верхними распредвалами брал за основу своих моторов Этторе Бугатти. Интересно, что Миллер строил машины как с передним, так и с задним приводом, а в 1932 году сделал несколько полноприводных шасси Miller FWD (на снимке) с тремя дифференциалами в трансмиссии. Один из полноприводных Миллеров лидировал в гонке Инди 500 1934 года, но из-за технических проблем финишировал девятым.
Именно с этими машинами связан любопытный эпизод: во время гонки на берлинском треке Avus в 1935 году полноприводный Miller шёл третьим, когда его рядная «восьмёрка» не выдержала и буквально взорвалась. При этом куски мотора лишь немного не долетели до трибуны, на которой среди прочих важных персон из национал-социалистической партии сидел сам Гитлер! Право, редкий случай, когда об отсутствии человеческих жертв стоит пожалеть. Прилетел бы осколок поршня в голову одного человека — и ход мировой истории был бы совсем другим…
Но Bugatti Т53 и Miller FWD не получили должной оценки — подвели «сырая» конструкция и постоянные поломки. Зато следующий эпизод в истории легковых машин с постоянным полным приводом оказался воистину судьбоносным.
Формула Фергюсона
Чтобы оценить всю важность того, что происходило в Англии на рубеже 50–60-х годов, вернёмся к теории. Межосевой дифференциал создан для того, чтобы «развязать» обе ведущие оси. Например, задние колёса бешено буксуют, а передние стоят на месте. И дифференциал этому никак не препятствует!
Лекарство от этого недуга впервые придумали конструкторы внедорожников — это принудительная блокировка. В нужный момент водитель дёргает за рычаг, механизм намертво фиксирует шестерни межосевого дифференциала — и трансмиссия из дифференциальной, «свободной», становится жёстко замкнутой. Именно по этой схеме были сделаны и первые поколения автомобилей Range Rover, и наша «Нива», и множество других внедорожников. И, кстати, первые автомобили Audi Quattro тоже — в этих машинах до 1984 года водителю приходилось самостоятельно включать блокировку межосевого дифференциала.
Но это решение опять-таки паллиативное: блокировку на дорожной машине можно задействовать только на бездорожье. А на асфальте её нужно выключать. И если автомобиль внезапно попадёт на скользкий участок, колёса одной из осей при подаче тяги начнут буксовать раньше других.
А можно ли сделать так, чтобы дифференциал при пробуксовке блокировался сам, автоматически? Внедрение самоблокирующегося межосевого дифференциала связано с именем англичанина Тони Ролта, гонщика и конструктора. Он и его друг Фред Диксон, тоже гонщик и страстный любитель повозиться с автомобильными железками, ещё до войны открыли собственное бюро Rolt/Dixon Developments по подготовке гоночных автомобилей. После войны два друга увлеклись идеей постоянного полного привода. Построив экспериментальную полноприводную «тележку» под названием «Краб», Ролт и Диксон в 1950 году перешли под крыло Гарри Фергюсона, преуспевающего тракторного фабриканта. Так возникла фирма Harry Ferguson Research.
Фергюсона мало интересовали гоночные болиды, зато он мечтал о безопасном дорожном автомобиле, колёса которого не буксовали бы при разгоне и не блокировались при торможении. И Ролт с Диксоном решили спроектировать такую машину «с нуля» — полностью, включая кузов, трансмиссию и силовой агрегат!
Знаний друзьям не хватало, и на должность компетентного главного конструктора пригласили Клода Хилла, который ради столь интересной работы покинул Aston Martin. Но несмотря на финансы Фергюсона, работа шла неспешно — экспериментальный седан Ferguson R4 был готов только через шесть лет. Зато какой: полноприводный, с оппозитной «четвёркой», с дисковыми тормозами на всех колёсах и с электромеханической антиблокировочной системой Dunlop MaxaRet, позаимствованной из авиации!
Ferguson R4 (1956) — экспериментальный автомобиль с трансмиссией по Формуле Фергюсона. Вместо коробки передач у прототипа был гидротрансформатор.
Но самое интересное для нас заключалось внутри раздаточной коробки прототипа. Разобрав её, помимо дифференциала мы бы увидели ещё дополнительный «набор» шестерёнок, две шариковые обгонные муфты и два пакета фрикционов. Пока колёса не скользили, всё это хозяйство мирно вращалось вхолостую. Но когда начиналась пробуксовка колёс одной из осей и разность частот вращения выходных валов достигала определенной величины, одна из муфт срабатывала, сжимала «свой» пакет фрикционов — и те тормозили шестерни дифференциала, моментально блокируя его и превращая дифференциальный привод в жёсткий!
Следующий прототип Ferguson R5 1962 года, на подготовку которого снова ушло шесть лет, оказался ещё интереснее — это был легковой полноприводный универсал. Эксперты журнала Autocar, которые позже испытывали Ferguson R5, делились впечатлениями: «Автомобиль достигает предела скольжений на невероятно высоких скоростях!»
Ferguson R5 был подготовлен к серийному производству в 1962 году.
Но никто из автомобилестроителей так и не взялся за выпуск первого в мире полноприводного универсала с межосевым самоблокирующимся дифференциалом и с АБС — слишком сложным и дорогим получился бы серийный Ferguson. Однако в 1962 году Ролту всё-таки удалось заинтересовать руководство компании Jensen — он предложил адаптировать полноприводную трансмиссию для купе Jensen CV8 с трёхсотсильным крайслеровским мотором V8, которое тогда готовили к серийному производству. Полный привод оказался мощному и скоростному купе как нельзя кстати!
Схема раздаточной коробки FFD с цилиндрическим несимметричным межосевым дифференциалом и механизмом автоматической блокировки с помощью фрикционных муфт экспериментального автомобиля Jensen CV8 FF. 1 — входной вал; 2 — промежуточный полый вал; 3 — полый вал с солнечной шестернёй дифференциала и ведущей шестернёй блокирующего механизма; 4 — водило межосевого дифференциала; 5 — вал привода задних колёс; 6 — цепной привод; 7 — вал привода передних колёс; 8 — многодисковая муфта, включающаяся при буксовании задних колёс; 9 — многодисковая муфта, включающаяся при буксовании передних колёс; 10 — электромагнитная система MaxaRet.
Через три года был построен экспериментальный полноприводный Jensen CV8 FF. А в 1966 году появилась следующая модель — Jensen Interceptor, с ещё более мощной 325-сильной «восьмёркой». Кроме заднеприводного купе предлагался и вариант со скромным шильдиком JFF. Это был знаменитый Jensen FF — первый в мире полноприводный серийный автомобиль с самоблокирующимся межосевым дифференциалом и с АБС! Буквы FF — это Formula Ferguson, обозначение запатентованной Ролтом и коллегами трансмиссии.
Схема трансмиссии FFD в экспериментальном автомобиле Jensen CV8 FF 1965 года. Разместить узлы и агрегаты привода на передние колёса помогла особенность компоновки: двигатель находился за осью передних колёс, поэтому оказалось возможным расположить главную передачу переднего моста между мотором и радиатором. Карданный вал для привода передних колёс поместили слева от силового агрегата (машина с «правым рулём»). 1 — двигатель; 2 — автоматическая коробка передач; 3 — раздаточная коробка; 4 — АБС MaxaRet; 5 — главная передача заднего моста; 6 — главная передача переднего моста.
Все без исключения автомобильные журналисты того времени упоминали выдающуюся устойчивость полноприводных Дженсенов и «практически неограниченный запас тяги на мокром асфальте». Жаль, что самого Фергюсона к тому времени уже не было в живых — он умер в 1960-м…
Почему мы столь подробно рассказываем о Формуле Фергюсона? Да потому, что именно фирма Harry Ferguson Research впервые в мире уделила столь серьёзное внимание полному приводу как средству повышения активной безопасности!
Мы уже говорили, что привод на четыре колеса оставляет больший запас по сцеплению для восприятия боковых сил. И это плюс. Но есть и минус — теряется однозначность реакций на подачу топлива. Если на мощном заднеприводном автомобиле в скользком повороте резко нажать на газ, это вызовет занос задней оси. На переднеприводной машине, наоборот, при подаче тяги в скольжение сорвутся передние колёса. Хорошо это или плохо — не в том дело. Главное, что водитель всегда знает, как поведёт себя автомобиль в таком случае.
А какая ось сорвётся в скольжение на полноприводном автомобиле? На этот вопрос ответить непросто. Если в данный момент больше разгружен передок или под передними колёсами более скользкое покрытие, то начнётся снос. А если худшие условия по сцеплению имеют задние колёса, то машина уйдёт в занос. Реакция может быть неоднозначной! И это небезопасно.
Jensen FF (1966–1971) — полноприводная версия купе Jensen Interceptor. Первый серийный полноприводный автомобиль с самоблокирующимся межосевым дифференциалом. Двигатель Chrysler V8 с «большим блоком» рабочим объёмом 6,3 л развивал 325 л.с. и приводил все колёса через трёхступенчатый «автомат» TorqueFlite или 4-ступенчатую механическую коробку. На диагональных шинах размерностью 6,70–15 (как у «Волги» ГАЗ-21) Jensen FF снаряжённой массой 1800 кг развивал 212 км/ч и набирал 100 км/ч за 7,7 с. Другие технические особенности: реечный рулевой механизм с гидроусилителем, дисковые тормоза всех колёс, одноканальная АБС Dunlop MaxaRet (от английского maximum retardation — максимальное замедление), независимая передняя подвеска на двойных поперечных рычагах и зависимая рессорная с тягой Панара сзади. В 1968 году в Великобритании Jensen FF стоил 6000 фунтов стерлингов — примерно столько же, сколько самый дешёвый Rolls-Royсe. Всего было выпущено 318 полноприводных машин.
К счастью, Тони Ролт сам был гонщиком, причём очень хорошим — однажды, в начале 50-х, он даже выиграл 24-часовую гонку в Ле-Мане. Поэтому Ролт с коллегами с самого начала попытались избежать неоднозначности полного привода, применив несимметричный межосевой дифференциал. На задние колёса всех машин с фергюсоновскими трансмиссиями подавалось 63% крутящего момента, на передок — 37%. Таким образом реакция на увеличение тяги была приближена к заднеприводной.
Самоблокирующийся дифференциал позволил Дженсену взять лучшее от обоих типов трансмиссий. Лёгкий вход в поворот и отсутствие циркуляции мощности в штатных режимах движения без пробуксовки — от дифференциального привода. А лучшую реализацию тяги двигателя при пробуксовке — от жёсткого.
Но обгонные муфты механизма блокировки работали жёстко, в пульсирующем режиме, моментально превращая несимметричный дифференциальный привод в блокированный и обратно. Поэтому при пробуксовке неоднозначность увеличивалась! Был нужен механизм, который бы более гибко и плавно изменял степень блокировки межосевого дифференциала. И в конце 60-х годов Тони Ролт вместе с Дереком Гарднером, который позже был главным конструктором болидов Tyrrell, занялись странными, на первый взгляд, экспериментами с силиконовой жидкостью, что использовалась в муфтах привода вентиляторов радиаторов. Да-да, именно Ролт с Гарднером вошли в историю как изобретатели вискомуфты!
Самоблокирующиеся развиваются
Цилиндр с пакетами фрикционов внутри, заполненный силиконовой жидкостью, отлично подходил для намеченной Ролтом цели — тормозить шестерни межосевого дифференциала при пробуксовке колёс. Пока скорости вращения всех колёс примерно равны, вискомуфта никак не вмешивается в работу межосевого дифференциала. Но вот колёса одной из осей забуксовали. Шестерёнки межосевого дифференциала тут же начинают раскручиваться, связанные с ним пакеты фрикционов вискомуфты «взбивают» силиконовую жидкость, и муфта «схватывается», блокируя межосевой дифференциал частично или полностью.
Такое устройство блокировало дифференциал плавнее и мягче, что положительно сказывалось на управляемости. После оформления патентов на вискомуфту Тони Ролт в 1971 году образовал фирму FF Developments — специально для того чтобы оснащать автомобили полноприводными трансмиссиями своей разработки. Например, среди первых заказов фирмы были полноприводные версии фургончиков Bedford для английских лесничеств, партия автомобилей Ford Zephyr FF для полиции или седаны Opel Senator 4×4 для британской военной миссии в Берлине. Но самым главным достижением FFD стала трансмиссия для американского автомобиля AMC Eagle, который выпускался с 1979 по 1988 год. Это был обычный легковой AMC Concord, но с поднятым на 75 мм кузовом и с увеличенными «внедорожными» шинами. И конечно же, с полноприводной трансмиссией. Причём впервые в мире серийный автомобиль был оснащён межосевым дифференциалом, блокирующимся вискомуфтой!
Конечно, создавался AMC Eagle главным образом для тех, кто периодически штурмует бездорожье, — полный привод появился на этих машинах не из-за желания добиться более уверенного разгона или лучшей устойчивости и управляемости, как в случае с суперкаром Jensen FF или с Audi Quattro. Но с трансмиссионной точки зрения прямыми наследниками AMC Eagle стали такие драйверские автомобили, как Subaru Impreza Turbo или Mitsubishi Lancer Evo с первого по шестое поколения. Ведь их межосевые дифференциалы тоже блокируются встроенными вискомуфтами.
Раздаточная коробка автомобиля AMC Eagle разработки FFD. Обратите внимание на вискомуфту — это встроенный в межосевой дифференциал цилиндрический корпус с фрикционными дисками, заполненный вязкой кремнийорганической жидкостью (силоксан). При пробуксовке колёс одной из осей ведущий и ведомый пакеты дисков в вискомуфте проворачиваются относительно друг друга, давление и температура внутри возрастают, изменяется вязкость силоксана — и вискомуфта тормозит одну из выходных шестерён, не позволяя ей вращаться относительно корпуса и блокируя межосевой дифференциал.
Серийное купе Audi Quattro, которое появилось в 1981 году, через два года после дебюта AMC Eagle, оснащалось обычным «свободным» межосевым дифференциалом с принудительной блокировкой. Правда, Фердинанд Пьех, который в начале 80-х был начальником инженерного департамента Audi, выбрал для Quattro очень изящную схему, отлично подходившую для компоновки ингольштадтских машин. Продольно расположенный силовой агрегат переднеприводного автомобиля прямо-таки указывал торцом коробки передач на задние колёса — осталось лишь встроить в корпус трансмиссии межосевой дифференциал. Но для привода на передние колёса конструкторы Пьеха не стали городить традиционный для полноприводников огород с отдельной «раздаткой». Немцы сделали вторичный вал коробки полым — и сквозь него пропустили приводной вал передних колёс. Воистину, всё гениальное просто…
С самого начала на Audi, в отличие от FFD, выбрали симметричное распределение крутящего момента по осям — 50 : 50. А в 1984 году из салонов полноприводных Audi наконец-то исчезли архаичные ручки принудительной блокировки «центра» — в трансмиссиях Quattro появился привычный нам самоблокирующийся дифференциал Torsen. Название Torsen происходит от английских слов torque sensing и отражает способность этого чисто механического устройства мгновенно и плавно увеличивать степень своей блокировки в ответ на изменение крутящего момента на выходных валах. Поэтому Торсену не нужна вискомуфта — он блокируется сам. Причём срабатывает не от разности скоростей вращения уже после начала пробуксовки, а ещё до начала скольжения: Torsen способен реагировать на изменение сцепных условий в пятне контакта шин с дорогой!
Кстати, когда в последнее время конструкторы больших внедорожников стали задумываться о достижении «легковой» управляемости, они тоже вспомнили про Torsen — он используется в трансмиссиях таких автомобилей, как новый Range Rover, VW Touareg/Porsche Cayenne и Toyota Land Cruiser Prado.
Но вернёмся в 80-е. Триумфальный выход Audi Quattro на раллийную сцену послужил началом полноприводного бума — все раллийные команды группы В бросились создавать версии 4×4. Один за другим появились Peugeot 205 T16, Metro 6R4, Lancia Delta S4, Ford RS200. .. Все как один — с вискомуфтами в самоблокирующихся дифференциалах разработки FFD. За работу с раллийными командами на FFD отвечал Стюарт Ролт, сын Тони…
В начале 90-х годов обращался к FFD и завод АЗЛК, когда было решено проектировать раллийную полноприводную модификацию «Москвича»-2141. С помощью англичан была создана трансмиссия с тремя самоблокирующимися дифференциалами — передним, задним и межосевым (точь-в-точь как на болидах Ford RS200). Управляемость экспериментальных полноприводных «Москвичей» в предельных режимах заслуживала самых лестных оценок — поведение машин в скольжении было предсказуемым и удобным для гонщиков. Оказалось, что, подбирая «жёсткость» блокирующих вискомуфт во всех трёх дифференциалах, можно в широком диапазоне настраивать управляемость автомобиля. Например, более «строгая» блокировка заднего межколёсного дифференциала повышает склонность автомобиля к заносу задней оси. Увеличение коэффициента блокировки переднего или межосевого дифференциала, наоборот, повышает запас устойчивости — автомобиль менее охотно заезжает в поворот из-за проскальзывания и сноса передних колёс.
Однако такая настройка актуальна только в одном случае — при раллийном стиле езды со скольжениями. Поэтому три самоблокирующихся дифференциала — это прерогатива болидов группы WRC. Причём на этих машинах, как правило, внутрь дифференциалов встроены уже не вискомуфты, а пакеты многодисковых фрикционов с гидроприводом и с электронным управлением. Таким образом конструкторы получают широчайшие возможности по настройке управляемости в режиме реального времени. Например, при входе в поворот бортовой компьютер может «распустить» муфты во всех трёх дифференциалах, превратив их в «свободные» — чтобы автомобиль легче заходил в вираж. А когда пилот начнёт ускоряться при выходе на прямую, электроника даст команду, и сервопривод «зажмёт» муфты в дифференциалах таким образом, чтобы добиться минимальной пробуксовки всех колёс и в то же время не перейти грань приемлемой недостаточной поворачиваемости, за которой болид вынесет наружу виража.
Кстати, первыми применили управляемые муфты в Daimler-Benz — в трансмиссии автомобиля Mercedes-Benz Е-класса 4Matic с кузовом W124 образца 1986 года. Причём муфт там было три — при необходимости электроника сперва подключала привод на передние колёса, а потом последовательно задействовала блокировки межосевого и заднего межколёсного дифференциалов. Но такая трансмиссия оказалась неоправданно сложной. Кроме того, на нестабильном покрытии электроника то подключала передние колёса, то отключала…
Ещё одним пионером применения электронноуправляемых муфт в скоростных автомобилях стала фирма Porsche — на модели Porsche 959 1986 года было две муфты, а электроника работала в четырёх режимах, которые мог выбирать водитель. Позже серийные автомобили с трансмиссиями подобной сложности начали выпускать японцы — это, например, Mitsubishi Lancer Evo, наиболее совершенный полноприводный дорожный автомобиль из всех, что когда-либо проходили испытания Авторевю. Эволюция с межосевым управляемым дифференциалом ACD и задним дифференциалом с активным распределением крутящего момента AYC способна творить чудеса…
Вместо дифференциала
Пока раллийные инженеры колдовали с механизмами самоблокировки, конструкторы массовых легковушек, наоборот, пошли по пути упрощения — и вообще отказались от межосевого дифференциала, заменив его вискомуфтой. Первым европейским легковым автомобилем с такой трансмиссией стал Volkswagen Golf II Syncro 1985 года — его трансмиссию разрабатывали инженеры фирмы GKN, которая ещё в 1969 году приобрела FFD. Преимуществами такой схемы были простота и унификация полноприводной модели с базовой. В нормальных условиях автомобиль сохранял характеристики и управляемость переднеприводного, а при пробуксовке передних колёс уже через 0,2 секунды срабатывала вискомуфта, способная подавать назад до 70% крутящего момента.
Компоновка трансмиссии VW Golf III Syncro. «Раздатка» пристыкована к коробке передач, а вискомуфта установлена в блоке с главной передачей заднего моста и подключает привод на задние колёса при пробуксовке передних. На автомобилях VW Golf IV место вискомуфты заняла муфта Haldex.
Но такой «упрощенный» привод задних колёс обладал существенным недостатком — даже небольшая задержка в срабатывании вискомуфты усугубляла неоднозначность реакций. При подаче газа в скользком повороте автомобиль сначала сносило наружу, как переднеприводный, а потом, с подключением задних колёс, он резко менял характер — и мог уйти в занос.
Здесь отличились японцы — они неоднократно пытались сгладить этот недостаток, подбирая характеристики вискомуфт и используя их не только для включения привода на задние колёса, но и для блокировки межколёсных дифференциалов. На некоторых моделях (например Nissan Sunny/Pulsar 1988 года) было аж три вискомуфты: одна включала привод на задние колёса, а две другие служили для блокировки межколёсных дифференциалов. В автомобилях Ноnda Concerto 4WD вискомуфты заменяли не только межосевой, но и задний межколёсный дифференциал…
Но потом оказалось, что вместо вискомуфты в приводе задних колёс гораздо удобнее использовать просто фрикционную муфту, пакеты которой сжимаются гидроприводом. А управлять сжатием фрикционов и, соответственно, регулировать величину подаваемого к задним колёсам крутящего момента отлично может электроника.
Нынче большинство легковых полноприводников и паркетников имеют в приводе одной из осей управляемую муфту — будь то Haldex на автомобилях гольф-платформы концерна VW, система VTM-4 фирмы Honda или xDrive на BMW. Причём быстродействие современных муфт сделало задержку в подключении колёс практически незаметной — теперь всё зависит только от того, как настроена управляющая электроника. Например, трансмиссии автомобилей Golf 4Motion и Audi A3 Quattro совершенно идентичны конструктивно. Но разное программное обеспечение позволяет фольксвагеновцам выбирать симметричное распределение момента по осям, а инженеры Audi предпочитают подавать назад только 40% тяги, придавая своим машинам более переднеприводный характер. Дело вкуса…
А какие из этих схем предпочитаем мы? Легковые дорожные автомобили с подключаемым вручную приводом на вторую ось ныне, слава богу, не выпускаются. А что касается остальных трёх схем…
Конечно же, самые интересные, с нашей точки зрения, автомобили — это наследники Формулы Фергюсона, в трансмиссиях которых есть самоблокирующийся межосевой дифференциал. И неважно, какими путями осуществляется блокировка — вискомуфтой, как на автомобилях Subaru, механическим дифференциалом Torsen, как на моделях Audi A4-A6-A8 Quattro, VW Phaeton, или электронноуправляемыми муфтами (Mitsubishi Lancer Evo). Главное, что автоматически блокирующийся «центр» при грамотной настройке может значительно улучшить управляемость автомобиля — сделать его более безопасным и приятным для искушённого водителя.
Главная тенденция сегодня — изменяемый вектор тяги, когда момент превентивно по команде электроники подаётся на то колесо, что способно максимально эффективно его реализовать. Пока самая сложная полноприводная трансмиссия в мире — у седана Mitsubishi Lancer Evo X. Дополнительные редукторы способны перебрасывать момент между задними колёсами, центр блокируется электронноуправляемой муфтой, а спереди — обычный механический самоблок.Эпоха полного привода таким, как мы его знаем, закончится с приходом электромобиля о четырёх мотор-колёсах.Но машины с автоматически подключаемым приводом на задние колёса мы тоже не сбрасываем со счетов — их становится всё больше. Муфту Haldex в последнее время активно используют Volvo и Saab. Трансмиссии со «свободными» межосевыми дифференциалами тоже находят своё применение — причём на таких скоростных автомобилях, как Мерседесы 4Matic всех классов. Но на этих машинах вместе с дифференциальным полным приводом в обязательном порядке «работает» неотключаемая антипробуксовочная электроника, которая в какой-то мере компенсирует отсутствие механизма самоблокировки.
Многодисковая муфта Haldex срабатывает от малейшего рассогласования скоростей вращения валов (1 и 5). Вращение любой из кулачковых шайб приводит к тому, что ролики начинают обкатываться по рабочим поверхностям (12) и перемещаться взад-вперёд, толкая поршни (10) в кольцевых цилиндрах насоса (на рисунке не показаны). Поршни накачивают масло в исполнительный цилиндр с поршнем (11), который и сжимает пакет дисков. Но электроника с помощью электромагнитного клапана может стравливать давление, тем самым гибко регулируя величину подводимого к колёсам момента. 1 — приводной вал; 2 — наружные фрикционные диски; 3 — внутренние фрикционные диски; 4 — уравновешивающая пружина; 5 — выходной вал; 6 — ступица; 7 — корпус; 8 — кулачковая шайба; 9 — ролики; 10 — кольцевые нагнетательные поршни; 11 — кольцевой рабочий поршень; 12 — профилированная рабочая поверхность.
Однако в последнее время мы замечаем, что по реальным ездовым свойствам автомобили с разными полноприводными трансмиссиями становятся все ближе друг к другу — естественно, при движении по дорогам общего пользования, а не на раллийных трассах. И чем более совершенными будут становиться электронные антипробуксовочные системы и программы управления муфтами типа Haldex, тем меньше будет различаться управляемость оснащённых ими автомобилей. Очевидно, это и есть прогресс.
Материал адаптирован к публикации с разрешения ООО «Газета «Авторевю». Все права на перепечатку принадлежат Авторевю.
Дифференциал повышенного трения СУБАРУ, задний редуктор R160.
Межколесные, самоблокирующиеся дифференциалы винтового (червячного) типа, 8-ми сателлитный (патент РФ №55063 от 27.07.2006г.).
youtube.com/embed/9WjEXZGE4YU?autohide=1&controls=1&showinfo=0″/>
Межколесный дифференциал повышенного трения (самоблокирующийся дифференциал) устанавливается в задний редуктор R160 (диаметр ведомой шестерни 160 мм), автомобилей Субару.
Устанавливается взамен оригинального дифференциала артикула №38421-АА030 и №27020-АА050 с LSD.
Степень блокирования «СРЕДНЯЯ»
подробно по ссылке: ВЫБОР ДИФФЕРЕНЦИАЛА ВАЛ-РЕЙСИНГ.
Обозначение в маркировке дифференциала цифра — «2».
Степень блокирования — СРЕДНЯЯ — коэффициент блокирования до 50% (или 3), или разница в моментах (в силе тяги на колесе) отстающего к забегающему колесу не более 3 раз.
Допускается снижение начального момента трения в дифференциале на автомобиле после прикатки и заправки масла.
Обозначение по маркировке ВАЛ-РЕЙСИНГ — «S».
Обозначение на упаковке: «SUBARU»- Винтовой -«СРЕДНЯЯ»
Таблица маркировки дифференциалов ВАЛ-РЕЙСИНГ. Маркировка дифференциалов ВАЛ-РЕЙСИНГ
Оптимален при ежедневной эксплуатации автомобиля. Заметно добавляет внедорожных свойств полноприводному автомобилю. Позволяет максимально исключить возможность пробуксовки колес оси с самоблоком. Мягок при включении. Снижает риск поломки полуосей при срабатывании и при пиковых ударных нагрузках. При правильной эксплуатации и после получения навыков вождения и управления автомобилем по пересеченной местности, снижает риск попадания в диагональное вывешивание.
При 100% диагональном вывешивании с остановкой автомобилям малоэффективен. Это связано с физическими свойствами и особенностями работы винтового дифференциала повышенного трения.
ВНИМАНИЕ : ДИФФЕРЕНЦИАЛ ПОСТАВЛЯЕТСЯ С УСТАНОВЛЕННЫМИ СТОПОРНЫМИ КОЛЬЦАМИ В ПОЛУОСЕВЫХ ШЕСТЕРНЯХ (ДЛЯ ФИКСАЦИИ ВНУТРЕННИХ ШРУСОВ).
ВНИМАНИЕ;
После разборки и снятия серийного дифференциала, перед установкой самоблокирующегося дифференциала ВАЛ-РЕЙСИНГ, необходимо зачистить, любым удобным для Вас способом внутренние приливы металла как показано на фото ниже.
(ДЛЯ УВЕЛИЧЕНИЯ НАЖМИТЕ НА КАРТИНКУ)
Применяемое масло:
При эксплуатации автомобиля с самоблокирующимся дифференциалом «VAL-racing»:
— параметры и характеристики масел рекомендуется использовать из руководства по эксплуатации автомобиля, в который устанавливается самоблокирующийся дифференциал «VAL-racing», обязательно с учетом температурных характеристик региона, где будет эксплуатироваться самоблокирующийся дифференциал.
Подробнее о масле для самоблокирующихся дифференциалов по ссылке:
О масле для самоблокирующихся дифференциалов ВАЛ-РЕЙСИНГ.
Что нужно знать о полном приводе Subaru
Мы уже рассказывали о том, что под брендом Quattro могут скрываться принципиально разные схемы полного привода. Вот и «плеяды» туда же! Несмотря на общее фирменное обозначение Symmetrical AWD, на автомобилях марки Subaru в зависимости от модели, года выпуска и рынка сбыта применяются совершенно разные полноприводные трансмиссии. Какие именно? Будем разбираться!
Немного истории
В вопросе производства массовых полноприводных легковушек Subaru опередила Audi на доброе десятилетие: предварительно «обкатав» технологию на компактной модели FF-1 1300, в 1972-м компания предложила покупателям полноприводный универсал Leone Station Wagon. Постепенно приставка AWD появилась на большинстве моделей Subaru 1970-1980-х, хотя вплоть до конца 1990-х даже крупные модели (Impreza, Legacy) могли иметь привод лишь на передние колеса.
Но что представлял собой AWD на Leone 1980-х? Задняя ось подключалась прямо на ходу (Shift on the Fly), причем на машинах с механической коробкой водитель это делал принудительно, а у автоматических трансмиссий процессом заведовала электроника, подключавшая многодисковую муфту.
В крошечном однообъемнике Libero/Domingo полный привод также появлялся по велению водителя, нажимавшего на кнопку. Но при этом подключалась передняя ось, так как основной привод был на задние колеса, постоянно загруженные мотором (да-да, такая вот любопытная компоновка!). Причем подключением заведовала вакуумная система.
К слову, позже Libero получил обычную вискомуфту. Таким же образом полный привод обрел и Justy второго поколения (по сути, «клон» Suzuki Swift II): нехитрый узел обеспечивал передачу тяги к задним колесам при пробуксовке передних.
То есть независимо от варианта конструкции полный привод у Subaru вовсе не был постоянным, и так продолжалось вплоть до конца 1980-х. А затем появились новые модели — и новые трансмиссии.
Действительно постоянный
«Классика» полного привода на Subaru 1990-2000-х (Impreza, Legacy, Forester) — система CDG с симметричным межосевым дифференциалом, блокирующимся при помощи вискомуфты, что позволяет перебрасывать на ось, имеющую лучшее сцепление с дорогой, до 80% тяги. Считайте, чистая механика, дополненная гидравликой, без какого-либо электронного управления. Но данный тип трансмиссии применялся лишь на автомобилях с механической коробкой передач.
При этом до недавнего времени некоторые универсалы (в частности, для европейского рынка с «атмосферными» моторами) имели еще и понижающую передачу. Правда, следует учитывать, что относительно небольшое соотношение (1:1,45) было предназначено не столько для покорения бездорожья, сколько для того, чтобы не спалить сцепление при маневрировании под нагрузкой (например, с прицепом) на слабонесущем покрытии. Также на некоторые модели (в частности, на отдельные модификации Forester) устанавливают задний межколесный дифференциал, блокируемый при помощи вискомуфты.
Но «заряженные» WRX STi оснащаются несимметричным дифференциалом, который обеспечивает перераспределение крутящего момента в пользу задних колес. Соотношение зависит от поколения «стихи», но находится на уровне 41:59 — 35:65. При этом «центр» имеет изменяемую (принудительно или автоматически) степень блокировки при помощи электромагнитной муфты. Данная система известна под названием DCCD (Driver Controlled Center Differential). На задней оси, кроме того, установлен «самоблок».
Последнее поколение WRX STi получило систему управления вектором тяги torque vectoring: в поворотах по команде блока управления внутреннее колесо подтормаживается, позволяя «вкручивать» автомобиль в вираж. Однако система работает только в связке с VDC и при ее отключении также дезактивируется.
Считается, что «честный» постоянный полный привод имеют лишь Subaru с механической коробкой передач, но это не так. Ведь для «заряженных» версий Subaru с автоматической трансмиссией (та же Impreza WRX STi, а также Forester S-Edition и Legacy GT) в свое время была предложена схема, получившая название Variable torque distribution AWD (VTD). В ней используется несимметричный планетарный дифференциал (45:55 в пользу задних колес), блокируемый с помощью электронно-управляемой многодисковой муфты. В качестве опции в заднем межколесном дифференциале также может быть установлена вискомуфта.
«Автоматически» полный
И все же большая часть моделей Subaru с автоматическими трансмиссиями и вариаторами Lineatronic оснащалась и оснащается системой полного привода с активным распределением крутящего момента Active torque split AWD (ACT). В зависимости от поколения и года выпуска имеются определенные конструктивные отличия, но принцип действия ACT остается неизменным.
В отличие от всех вышеназванных схем межосевого дифференциала здесь нет, за передачу крутящего момента к задним колесам отвечает электронно-управляемая муфта. Ну а главное — такие Subaru имеют более «переднеприводный» характер на скользких покрытиях, поскольку соотношение в нормальных условиях здесь 60:40 в пользу передних колес!
При этом перераспределение тяги зависит от целого ряда параметров (выбранный режим коробки, скорость вращения передних и задних колес, положение педали «газа» и т.д.), на основании которых блок управления «решает», насколько жестко зажать фрикционы и сколько момента перебросить на заднюю ось. Поэтому соотношение меняется в режиме реального времени и может варьироваться от 90:10 до 60:40 в пользу передней оси. Кстати, задний межколесный дифференциал на ряде моделей также может быть оснащен вискомуфтой в качестве автоматической блокировки.
Сказать, что Subaru с ACT имеют «ненастоящий» полный привод, нельзя: в отличие от многих моделей других марок с подключаемой задней осью здесь тяга к задним колесам поступает всегда. Но до «равноправного» соотношения 50:50 дело все же не доходит, в целом на скользких покрытиях такие автомобили управляются несколько иначе, нежели версии с механическим дифференциалом. Впрочем, все эти особенности раскрываются в далеко не стандартных режимах движения, а в «гражданских» даже опытный водитель вряд ли определит, какая из вариаций Symmetrical AWD использована.
С точки зрения эксплуатации
«Механика» вполне надежна, однако со временем начинают шуметь подшипники валов. Ресурс сцепления средний, но значительно снижается при буксировке прицепов и внедорожных вылазках. Чтобы уберечь детали межосевого дифференциала и вискомуфты от износа и повреждений (а у машин начала 2000-х там могла быть «слабина»), размерность шин на передней и задней осях не должна различаться. Еще одна проблема, также связанная с режимом эксплуатации, — выход из строя полуосей. Редко, но у особо «настойчивых» владельцев это случается.
В автоматических трансмиссиях крутящий момент на заднюю ось передается через пакет фрикционов, который срабатывает при поступлении масла, — за это отвечает соленоид. Если он зависает в открытом положении, это приводит к постоянному срабатыванию полного привода и, как следствие, повышенной нагрузке на передний дифференциал, а там и до поломки последнего недалеко. На старых машинах проблема решалась заменой соленоида, на современных, возможно, придется менять гидроблок, что обойдется на порядок дороже.
Наш вердикт
Постоянный полный привод с межосевым дифференциалом — за малым исключением удел машин с механической коробкой передач, что для нынешнего модельного ряда Subaru, считайте, исключение из правил. Современные «плеяды», как правило, оснащены вариатором Lineatronic и «автоматическим» полным приводом ACT.
Но стоит ли об этом сожалеть? За счет конструктивных особенностей (в частности, вместо ремня используется цепь, вместо пакета сцеплений — гидротрансформатор, как на классических АКП) на фоне других СVT-трансмиссий Lineatronic выглядит весьма достойно с точки зрения стойкости к нагрузкам. Да и трансмиссия АСТ, дополненная электронными «помощниками», оказывается весьма эффективной в большинстве дорожных ситуаций, а разница с «дифференциальным» полным приводом CDG хотя и есть, но для большинства владельцев вовсе не критична, если они вообще ее замечают.
Радует, что независимо от конструкции полный привод у Subaru достаточно надежен и вынослив, хотя не лишен уязвимых мест. По поводу их природы можно спорить, конструкторское это упущение или же следствие тех высоких нагрузок, которые «плеяды» традиционно получают от своих преданных владельцев, но факт остается фактом: «трансмиссионные» проблемы хоть и редко, но случаются. Однако, как правило, уже на хорошо поездивших машинах, а к тому моменту бюджетные решения уже имеются.
Иван КРИШКЕВИЧ
Фото автора и из открытых источников
ABW.BY
Subaru WRX STi: Секреты гостеприимства
«Как же легко ею управлять!» — удивляюсь я первым впечатлениям за рулем новой WRX STi. Очередную модель STi задумали сделать не только драйверским автомобилем, но и практичным в ежедневной эксплуатации. У STi новый кузов (только седан) с увеличенной на 25 мм колесной базой, и задние пассажиры теперь почувствуют себя чуть свободней. STi потерял 5 мм в высоте и прибавил 15 мм в длине, не изменившись в ширину.
В отделке интерьера хочется отметить мягкий пластик и приличное качество материалов. В центре приборной панели — сенсорный дисплей (на него в том числе выводится изображение с камеры заднего вида), управлять которым можно, не снимая перчаток. Великолепны спортивные сиденья с кожаной обивкой и регулировками на сервоприводах. В салоне множество карманов и емкостей разного объема. Похоже, это самый гостеприимный WRX STi в истории модели. Возможности выросшего на 40 л багажника расширяет складывающаяся в пропорции 60/40 спинка заднего дивана.
Но тех японских инженеров, что занимались комфортом “эстиайки”, явно постоянно отвлекали на ходовую и моторы. Например, крышку багажника можно открыть четырьмя способами: кнопками на панели приборов и багажнике, с брелка и специальной ручкой изнутри багажного отделения. Но закрывать, как и раньше, придется, цепляя рукой сверху за наружную поверхность. Неужели было сложно придумать потайной хват, чтобы можно было не пачкать руки? С шумоизоляцией салона настоящая беда! Гул от дороги в салоне такой, что сложно оценить качество звучания аудиосистемы Harman/Kardon. Но здесь хотя бы понятно, что экономили драгоценные для динамических показателей килограммы. Ведь главным в STi были и остаются ее ездовые качества.
/В отделке интерьера хочется отметить мягкий пластик и приличное качество материалов. В центре панели стоит сенсорный дисплей (на который в том числе выводится изображение с камеры заднего вида), управлять которым можно не снимая перчаток. Фото: В.Овсянкин
WRX STi дарит несравнимые ни с каким другим автомобилем ощущения в управлении, воодушевляя тысячи фанатов по всему миру. Конструкторы и маркетологи эту всемирную любовь ценят и помнят о ней, когда создают очередную версию. Неудивительно, что с технической точки зрения новое поколение машины представляет собой глубоко модернизированное предыдущее. Действительно, почему не использовать то, что надежно и проверено временем? Руководствуясь этим, для нового WRX STi позаимствовали у предшественника оппозитную 300-сильную «четверку» рабочим объемом 2,5 л, симметричную схему полного привода с самоблокирующимися дифференциалами осей — Torsen — сзади, винтовым спереди, — и межосевым с электромагнитной блокировкой, управляемой новым электронным блоком. 6-ступенчатую механику также оставили, сделав более точным момент переключения. Сохранили прежнее шасси, только усовершенствовав конструкцию подвески — увеличили диаметр стабилизаторов, заменили рулевые тяги и усилили крепления рейки для лучшей управляемости. Остался даже гидравлический усилитель руля — за пользу для информативности управления. “Время реакции автомобиля на поворот руля сократилось с 0,27 до 0,1 секунд”, — не без гордости говорили нам инженеры, сравнивая технические показатели STi с Porsche 911.
Утюжить серпантины в окрестностях Стокгольма мне действительно легко. Руль точен, с отличной обратной связью и по-спортивному тугим усилием. Обод руля стал меньше в диаметре, срезан снизу, чтобы не мешать ногам. В поворотах хорошо помогает система Active Torque Vectoring, имитирующая активный дифференциал подтормаживанием переднего внутреннего колеса: благодаря ей и без того устойчивый на виражах STi еще лучше вписывается в повороты, несмотря на высокие боковые ускорения. Реакции автомобиля — без выраженной недостаточной поворачиваемости, свойственной полноприводным автомобилям.
/На гоночной трассе можно выбрать режим “Track Mode”, который слегка отпускает “ошейник” системы стабилизации. Можно отключить стабилизацию полностью, продержав кнопку в нажатом положении секунды четыре. В.Овсянкин
Водитель может выбирать из трех режимов движения — Intelligent (самый спокойный), Sport и Sport Sharp (для трека), — которые различаются быстротой реакции мотора на газ. Каждый режим отражается особой графикой на дисплее. Есть два варианта блокировки центрального дифференциала — ручной и автоматический. Например, при движении по скользкой дороге блокировку желательно усилить, на сухой — распустить. Но это в теории, а на практике лучше адаптировать автомобиль под себя и конкретную дорогу. По крайней мере, создатели STi сделали все возможное, чтобы каждый мог выбрать свои настройки. Как говорят в Subaru: «Мы создаем автомобили, которыми управляет водитель, а не наоборот”.
Потому самое грустное место в STi — пассажирское. Мой коллега сидит злобный и хмурый, в надежде хоть когда-нибудь сменить меня за рулем. А я не просто еду, а ловлю кайф: от управления автомобилем, от ощущения четкости включения каждой передачи, молниеносной реакции на газ, динамики разгона и торможения, от удивительной цепкости за асфальт, которую я регулирую все тем же регулятором блокировки межосевого дифференциала. Зажал его сильнее — и машина по асфальту едет, словно по рельсам, отпустил — и корма уходит наружу под сброс газа, помогая мне довернуть в повороте автомобиль.
/Заднее антикрыло — не элемент декорации (оно выполнят свои функции на скоростях выше 80 км/час), но без него новый STi смотрится блекло даже на фоне предыдущей версии. Фото: В.Овсянкин
У турбомотора нет ярко выраженного «подхвата», свойственного предыдущим поколениям WRX STi. Тем не менее на автостраде после 4000 оборотов в минуту «в полный газ» получаю знакомый толчок в спину вместе с инъекцией адреналина в кровь. Вторая передача выкручивается до отсечки при 100 км/ч, третья — при 140 км/ч. Стрелка указателя давления наддува прыгает за показатель в один бар, четвертая — 180 км/ч при 6500 об/мин. Разгон идет на одном дыхании, и лишь вопль с пассажирского места: «Нас посадят в тюрьму! Здесь лимит 110 и спидкамеры!» — возвращает меня на землю. Включаю шестую, на которой STi оказывается довольно живым, начиная от 2000 об/мин, еду 80 км/ч, на которых машина не напрягает жесткой подвеской. «Надо же, теперь на STi можно ездить в дачном режиме», — отмечаю я, когда мгновенный расход топлива упал ниже 10 л на сотню.
Владельцы Porsche в застольных спорах любят козырнуть: мол, 911-й — не тот автомобиль, управлять которым можно расслабленно, одной рукой, он ошибок не прощает. То же самое всегда можно было сказать о Subaru WRX STi. Похоже, времена меняются, теперь я могу ехать и быстро, и не напрягаясь.
Полный привод Subaru
Рубрика: Трансмиссия | Опубликовано: 20 Январь 2007Давайте поговорим о полном приводе автомобилей Subaru, который многие называют «самым настоящим, продвинутым и правильным».
Механические коробки нас, по традиции, интересуют мало. Тем более с ними все довольно прозрачно — со второй половины 90-х субару на механике имеют честный полный привод с тремя дифференциалами (межосевой блокируется закрытой вискомуфтой). Из отрицательных сторон стоит упомянуть слишком усложненную конструкцию, получившуюся вследствие совмещения продольно установленного двигателя и исходно-переднего привода. А также отказ субаровцев от дальнейшего массового использования такой несомненно полезной вещи, как понижающая передача. На единичных «спортивных» версиях встречается и сильно продвинутая МКПП с «электронноуправляемым» межосевым дифференциалом, где водитель может на ходу изменять степень его блокировки…
Но не будем отвлекаться. В автоматических трансмиссиях ныне эксплуатируемых Subaru используется два основных типа 4WD.
1. Active AWD
Этот вариант издавна устанавливается на подавляющее большинство Subaru (с АКПП типа TZ1). По сути, этот «полный» привод такой же «честный», как и тойотовские V-Flex или ATC — те же самые подключаемые задние колеса и тот же самый принцип TOD (Torque on Demand). Межосевого дифференциала нет, а задний привод включается гидромеханической муфтой в раздатке — назад идет от ~10% усилия в нормальных условиях (если не относить это на внутреннее трение в муфте) до почти 50% в предельном состоянии.
Хотя субаровская схема имеет некоторые преимущества в рабочем алгоритме перед другими типами подключаемого 4WD. Пусть и небольшой, но момент при работе A-AWD (если только система не отключена принудительно) все же передается назад постоянно, а не только при пробуксовке передних колес — это полезнее и эффективнее. Благодаря гидромеханике перераспределять усилие (хотя слишком громко сказано «перераспределять» — просто отбирать часть) можно точнее, нежели в электромеханическом ATC — A-AWD способен слегка отрабатывать и в поворотах, и при ускорении-торможении, да и конструктивно попрочнее будет. Снижена вероятность резкого самопроизвольного «появления» заднего привода в повороте с последующим неуправляемым «полетом» (есть такая опасность у машин с вискомуфтой подключения задних колес).
Для улучшения «вседорожных» качеств Subaru зачастую устанавливает в задний дифференциал моделей с A-AWD механизм автоматической блокировки (вязкостную муфту, «кулачковый дифференциал» — о нем см. ниже).
Модель и Модификации
Impreza кроме 2.0T WRX
Forester SF5A52..53 2.0T, SF5B53 2.0T, SF5C53 2.0T (P#,V#,H#,I#), SF5A56 2.0, SF5B56..57 2.0, SF5C56..57 2.0, SF5A55 2.0T (T/tb до 09.98), SF9B58 2.5, SF9C58 2.5
Legacy BE5 2.0, BE9 2.5, BH5 2.0, BH9 2.5 (P#,C#,M#,K#)
2. VTD AWD
Схема VTD (Variable Torque Distribution) применяется на менее массовых версиях с автоматическими коробками типа TV1 (и TZ102Y, в случае Impreza WRX GF8) — как правило, наиболее мощных в гамме. Здесь с «честностью» все в порядке — полный привод действительно постоянный, с межосевым дифференциалом (блокируется гидромеханической муфтой). Кстати, по такому же принципу работал еще с середины 80-х годов тойотовский 4WD на коробках A241H и A540H, но сейчас, увы, он остался только на исходно-заднеприводных моделях (полный привод типа FullTime-H или i-Four).
В каждом проспекте, посвященным VTD указывается, что «момент делится между передними и задними колесами в соотношении 45/55». И надо же, многие в самом деле начинают полагать, что вперед по трассе их влечет на 55% задний привод. Нужно понимать, что эти цифры — показатель абстрактный. Когда машина движется по прямой и все колеса вращаются с одинаковой скоростью, то межосевой дифференциал, естественно, не отрабатывает, и момент четко делится между осями пополам. А что значат 45 и 55? Всего лишь передаточные числа в планетарном ряду дифференциала. Если передние колеса принудительно полностью остановить, то водило дифференциала также останавливается, а передаточное отношение между ведущим валом заднего привода и входным валом раздатки как раз составит те самые 55/100, то есть назад отправится 55% момента, развиваемого двигателем (дифференциал сработает как повышающая передача). Если замрут задние колеса, то через водило дифференциала аналогичным образом вперед пойдет 45% момента. Разумеется, здесь не учитывается наличие блокировки, да и вообще… В реальности распределение моментов является величиной постоянно плавающей и далеко не однозначной.
К VTD Subaru обычно прилагает достаточно продвинутую систему VDC (Vehicle Dynamic Control), по-нашему — систему курсовой устойчивости. При старте ее составная часть, TCS (Traction Control System), подтормаживает буксующее колесо и слегка придушивает двигатель (во-первых, углом опережения зажигания, во-вторых, даже отключением части форсунок). На ходу работает классическая динамическая стабилизация. Ну и благодаря возможности произвольно тормозить любое из колес, VDC эмулирует (имитирует) блокировку межколесного дифференциала. Конечно, это здорово, но не стоит серьезно полагаться на возможности такой системы — пока что ни у одного из автопроизводителей не получилось даже приблизить «электронную блокировку» к традиционной механике по надежности и, главное, эффективности.
Модель и Модификации
Impreza GF8C58..GF8F58 2.0T (WRX), GGAA58T..GGAB58T 2.0T (WRX)
Forester SF5B55 2.0T (T/tb с 09.98), SF5C53 (U#,J# — S/tb с 01.2000)
Legacy BE5 2.0T, BH5 2.0T, BH9 2.5 (A#,D#,F#,3#), BHE 3.0
3. «V-Flex»
Вероятно, стоит упомянуть и про 4WD, применяемый на малых моделях с вариаторными коробками (вроде Vivio и Pleo). Здесь схема еще проще — постоянный передний привод и «подключаемый» вискомуфтой при пробуксовке передних колес задний мост.
О кулачковом дифференциале
1 — сепаратор, 2 — направляющие кулачки,
3 — упорный подшипник, 4 — корпус дифференциала, 5 — шайба, 6 — ступица.
Мы уже говорили, что в английском языке под понятие LSD попадают все самоблокирующиеся дифференциалы, однако в нашей традиции так обычно называют систему с вискомуфтой. Часто применяемый на Subaru задний LSD-дифференциал построен по-иному — его можно назвать «фрикционным, кулачкового типа». Жесткой связи между ведущей шестерней дифференциала и полуосями здесь фактически нет, разность в угловой скорости вращения обеспечивается проскальзыванием одной полуоси относительно другой, а «блокировка» заложена в сам принцип действия.
Сепаратор вращается вместе с корпусом дифференциала. Закрепленные на сепараторе «шпонки» могут перемещаться в поперечном направлении. Выступы и впадины кулачков (назовем их так) вместе со шпонками образуют передачу вращения, наподобие цепной.
Если сопротивление на колесах одинаково, то шпонки не проскальзывают и обе полуоси вращаются с одинаковой скоростью. Если сопротивление на одном колесе будет ощутимо больше, то шпонки начинают скользить вдоль впадин и выступов соответствующего кулачка, все же пытаясь его провернуть в сторону вращения сепаратора. В отличие от дифференциала планетарного типа, скорость вращения второй полуси при этом не увеличивается (то есть, если одно колесо будет стоять неподвижно, второе не будет крутиться в два раза быстрее, чем корпус дифференциала).
Сможет или не сможет машина с таким дифференциалом «выехать на одном колесе» — определяется текущим балансом между сопротивлением на полуоси, скоростью вращения корпуса, величиной передаваемого назад усилия и трением в паре шпонка-кулачок. Однако данная конструкция заведомо не является «вне»дорожной.
Легион-Автодата
Вернуться к списку статей в разделе: Трансмиссия
Оставьте свой отзыв!
Subaru SI-DRIVE и DCCD Разъяснение
SI-DRIVE
Управлять так, как вы хотите
Знаменитый симметричный двигатель Subaru Платформа AWD и ее основные принципы горизонтальной симметрии и низкого центра Gravity теперь доступны в полном объеме в гибридной упаковке. В Система оснащена компактными высокопроизводительными двигателями и батареями, подключенными к симметричному Полный привод. Приводной двигатель был встроен в «Lineartronic (* 1)» Subaru. система трансмиссии нового поколения расположена низко в кузове автомобиля. В Гибридный Lineartronic был недавно разработан с сохранением присущих преимущества системы Lineartronic, а также оптимизацию каждого компонент и улучшение топливной экономичности. Двигатель Boxer Engine также был специально спроектирован для гибридной платформы с двигателем Subaru Boxer Engine с измененная степень сжатия и пониженный уровень трения для обеспечения лучшего топлива экономия и работа с меньшим шумом. Топливная эффективность на дороге еще лучше с функциями «SI-DRIVE (* 2)» и «ECO Cruise Control (* 3)», предназначенными для оптимального управление в соответствии с условиями вождения.Гибридная платформа не только обеспечивает выдающаяся топливная экономичность и впечатляющая производительность, а также хорошо сбалансированный дизайн для всех аспектов автомобиля, включая мощность, комфорт салона и простота использования, которыми славится Subaru.
· Интеллектуальный режим SI-DRIVE активируется Интеллектуальный режим для немедленного реагирования на вождение и защиты окружающей среды дружеское выступление. Отображение дроссельной заслонки уравновешивает плавность и эффективность для повышенный уровень контроля. | · Спортивный режим Спортивный режим обеспечивает плавная работа двигателя на любой скорости движения. Эффект моментальный линейный отклик, воплощающий в жизнь изысканный отклик с большим крутящим моментом. | Спортивный режим · Режим Sport Sharp Спортивный режим обеспечивает
плавная работа двигателя на любой скорости движения. Эффект моментальный
линейный отклик, воплощающий в жизнь изысканный отклик с большим крутящим моментом. |
Объяснение симметричного полного привода | Качество Subaru
Subaru использует четыре различных типа систем полного привода
Все они очень похожи, но небольшие различия позволяют им предложить что-то для всех.
Вязкостной центральный дифференциал (VCD)
Самая простая система из всех, но простая не означает, что ей не хватает производительности. Эта система VCD используется на всех моделях с механической коробкой передач, таких как Crosstrek, Impreza и Forester. Крутящий момент распределяется 50/50 между передними и задними колесами и включает открытый передний и задний дифференциал. Если одно колесо теряет сцепление с дорогой, вязкостная муфта передает мощность на колеса с большим сцеплением, обеспечивая лучшее сцепление и контроль.
Active Torque Split (ATS)
Следующим по популярности вариантом является система Active Torque Split.Включенный во все модели бесступенчатой трансмиссии (CVT), такие как Forester, Legacy и Outback, эта опция распределяет крутящий момент в соотношении 60/40 между передними и задними колесами. Эта система полного привода включает в себя многодисковое центральное сцепление, а не дифференциал, но имеет открытый дифференциал спереди и сзади, как в двигателе VCD. Она называется активной системой, потому что, в отличие от других систем полного привода, она не дожидается потери сцепления с дорогой, поэтому нет задержки.
Переменное распределение крутящего момента (VTD)
Доступный только на вариаторе WRX, VTD распределяет крутящий момент 45/55 между передней и задней частью.Этот перекос сзади снижает недостаточную поворачиваемость при резком ускорении. Планетарный межосевой дифференциал и электронная гидравлическая раздаточная муфта плавно передают мощность туда, где она вам нужна.
Центральный дифференциал, управляемый водителем (DCCD)
Эта трансмиссия, доступная только на WRX STI, является самой совершенной и сложной из четырех. Благодаря разделению 41/59 он больше опирается на задний наклон, что идеально для спортивного вождения. Использование планетарного механического дифференциала повышенного трения, а также электронного дифференциала, который водитель может заблокировать при необходимости.Спереди находится винтовой дифференциал повышенного трения, а сзади — дифференциал повышенного трения Torsen, в отличие от других, предлагающих открытые дифференциалы повышенного трения спереди и сзади. Наряду с Active Torque Vectoring, системой, которая помогает в поворотах, применяя тормоза к внутреннему колесу, чтобы действительно обнять вас в повороте.
Какие преимущества предлагает симметричный полный привод?
- Сцепление
- Сцепление
- Управляемость
- Производительность
Мощность, сбалансированная между передней и задней частью, левой и правой, обеспечивает стабильный и предсказуемый привод. Повышенная управляемость благодаря равномерному распределению мощности между всеми четырьмя колесами обеспечивает превосходную управляемость и прохождение поворотов. Постоянная оценка того, какие колеса имеют наибольшее сцепление с дорогой, чтобы обеспечить максимальное сцепление с дорогой в любых условиях.
Чем они отличаются от других систем полного привода на основе FWD и других систем полного привода и систем RWD, предлагаемых конкурентами
Симметричный полный привод Subaru уникален тем, что он всегда активен. Большинство других систем подает мощность на задние или передние колеса только тогда, когда они необходимы, например, если передние колеса теряют сцепление с дорогой на обледенелой местности. Несмотря на то, что они предлагают умеренный перекос передних или задних колес, автомобили Subaru всегда имеют мощность на все колеса. Большинство других систем имеют постоянное смещение в любом случае, и дифференциал не может передать достаточную мощность на необходимые колеса в случае потери тяги.
American Express
На 4EAT имеется 2 типа межосевого дифференциала.VTD (переменное распределение крутящего момента), который представляет собой механический центральный дифференциал и центральный дифференциал на основе сцепления. Муфта на основе MPT (многодисковая раздаточная муфта) наиболее распространена у старых лесников. VTD можно найти в большинстве новых WRX от 4eat. Основное отличие в работе заключается в том, что VTD требуется 0 В для блокировки, тогда как основанию сцепления требуется 12 В для блокировки. Мы обнаружили, что VTD более надежен в блокировке и удержании в заблокированном состоянии, потому что он механический, когда другой реагирует на диски сцепления и давление жидкости.
В нашем магазине Forester 2003 года выпуска, на который мы заменили межосевой дифференциал VTD. Если вы выполняете эту замену, обратите внимание, что TCU в Forester некорректно взаимодействует с дифференциалом VTD, поскольку они работают в обратном направлении друг от друга.
Есть 2 варианта проводки в замке центрального дифференциала,
Вариант №1 (лучше всего для Forester с замененным VTD)
В этом случае мы не хотим, чтобы TCU управлял межосевым дифференциалом. Итак, чтобы обмануть TCU, нам нужно убедиться, что он показывает правильные значения сопротивления (или индикатор передачи будет мигать), поскольку он считает, что что-то не так. Спереди мы хотим подключить переключаемый источник питания 12 В (ключ выключен = 0 В). Это гарантирует, что вы не забудете выключить выключатель и разрядите аккумулятор. Далее идет стандартный кнопочный переключатель на 12 В, они могут очень сильно зависеть от того, как они подключены, и большинство из них будет поставляться со схемами и т. Д., Чтобы показать, как они должны быть подключены. Далее идет переключатель диммера, это не нужно делать, кроме центральный дифференциал и предохранение его от переднего привода, я рекомендую это как лучший вариант для полного контроля того, как ваш межосевой дифференциал действует в городе и на бездорожье.Это будет 0–12 В, его можно найти здесь ПЕРЕКЛЮЧАТЕЛЬ ДИММЕРА. Также не требуется, но чтобы увидеть в реальном времени считывание центрального дифференциального напряжения, используйте это или что-то подобное. Считывание 0-12 В Последнее, но не менее важное после считывания, оно приведет обратно к межосевому дифференциалу. Здесь вы перерезаете провод TCU, ведущий дальше в жгут.
На стороне TCU вам нужно обмануть TCU, чтобы он думал, что он все еще подключен. В ваших транспортных средствах вы можете найти точные требования для этого. В нашем случае мы подключили резистор мощностью 25 Вт 15 Ом и подключили его прямо к земле.Он все еще немного нагревается, можно было бы увеличить, но работает нормально. Не мигает индикатор Trans.
Вариант №2
Рекомендуется для тех, кто все еще использует заводской центральный дифференциал. Необходим переключатель Dual Pull Dual Throw. Это позволяет вам контролировать центральный дифференциал TCU, когда вы не хотите, чтобы он был заблокирован (или вы не хотите его контролировать). Скорее всего, для нормального использования на дороге. Когда вы нажмете переключатель, двойная тяга переключится на резистор, а переключатель 12 В приведет к центральному дифференциалу.Вы все еще можете подключить медный чайник и прочитать, если хотите, на этой установке.
Но помните, что для блокировки VTD потребуется 0 В. Так что для этого потребуется заземление вместо 12В. Мы заземлили наш переключатель диммера, который очень зависит от того, какой провод нуждается в питании, а какой требует заземления, так как на задней панели диммера есть 3 провода. Если вы не хотите включать диммер, но у вас есть VTD, источник питания 12 В будет заземлен.
Если у Вас возникнут вопросы по данной модификации, сообщите нам!
Не всякая система полного привода Subaru создана равной
Антуан Гудвин / CNETДа, почти каждая модель Subaru, которую вы можете купить сегодня, в стандартной комплектации оснащена системой симметричного полного привода автопроизводителя (только BRZ с задним приводом не оснащена). Однако вы можете не знать, что не все системы Symmetrical AWD одинаковы. Несмотря на то, что они носят одно и то же название, сегодня используются как минимум четыре различных системы полного привода.
Subaru, как этот WRX 2011 года, с механической коробкой передач, оснащен межосевым дифференциалом с вязкостной муфтой. CNET Стандартная вискомуфта
Прежде всего, это система, о которой большинство людей склонно думать, когда речь заходит о симметричном полном приводе.Система, которую мы для простоты назовем «стандартной», встречается в большинстве автомобилей Subaru, оснащенных механической коробкой передач, и является наиболее симметричной из конфигураций, по умолчанию с распределением крутящего момента 50:50 при нормальных условиях движения без проскальзывания.
При обнаружении пробуксовки на передней или задней оси блокируемый межосевой дифференциал может передать до 80 процентов доступного крутящего момента на ось с наилучшим сцеплением. В межосевом дифференциале используется вязкая муфта, которая работает без помощи компьютера и реагирует на механические различия в сцеплении.
Этот тип сцепления существует уже много лет, и его появление на Subaru WRX 2015 года означает, что оно, вероятно, никуда не денется. Эта простая и надежная система — рабочая лошадка репутации Subie AWD.
В комплектации 3.6R (здесь не показано) Legacy, Outback и Tribeca текущего поколения получают настройку VTD с задним смещением. Антуан Гудвин / CNET VTD для автоматических трансмиссий
Недавно автопроизводитель предпринял шаги по переходу со стандартных автоматических трансмиссий с гидротрансформатором на бесступенчатые трансмиссии (CVT) для большинства своих автомобилей, но есть некоторые возражения.
Шестицилиндровые модели Legacy, Outback и Tribeca с обозначением 3.6R все еще представляют версию Symmetrical AWD, которая использует переменное распределение крутящего момента (VTD) и уникально сочетается с их более старой пятиступенчатой автоматической коробкой передач. В этом случае номинальное распределение крутящего момента по умолчанию задано в соотношении 45:55, в котором вязкий межосевой дифференциал заменен гидравлической многодисковой муфтой в сочетании с межосевым дифференциалом планетарного типа.
При обнаружении пробуксовки на основе входных данных от датчиков, измеряющих пробуксовку колес, положение дроссельной заслонки и тормозное усилие, сцепление с электронным управлением может заблокироваться в соотношении 50:50 между передними и задними колесами, где требуется максимальное сцепление.
Там, где чисто механический вязкостный дифференциал проще и, возможно, более гибок, система VTD с электронным управлением имеет то преимущество, что она является упреждающей, а не реактивной — переключение крутящего момента между осями происходит быстрее, чем это может сделать механическая система.
С переключением на вариатор модели Subaru, такие как XV Crosstrek, также переключаются на слегка смещенную вперед систему AWD. Уэйн Каннингем / CNET Модели с вариатором
В более новых Subies с вариатором используется третья система симметричного полного привода. Аппаратное обеспечение аналогично системе VTD, описанной выше — в обеих используются многодисковые муфты с электронным управлением для управления разделением крутящего момента, — но система с вариатором по умолчанию работает с номинальным разделением крутящего момента с передним смещением 60:40.
Вы можете найти эту систему на моделях XV Crosstrek, совершенно новой Impreza WRX 2015 года и более старых моделях, таких как Legacy 2014 года.
DCCD
Существует множество других классических вариаций системы симметричного полного привода Subaru, которые больше не используются, но последняя из них, которую мы сегодня обсудим, — это система, установленная на WRX STI.
В этой системе используются два межосевых дифференциала. Один с электронным управлением и дает компьютеру Subaru точный контроль над распределением крутящего момента между передней и задней частью. Другой — механический блок, способный быстрее реагировать на раздражители, чем его электронный аналог. В идеале водители извлекают выгоду из лучшего как электронного, так и механического реагирования.
Чуть ниже контроллера SI-Drive находится переключатель, который позволяет драйверам WRX STI изменять баланс между двумя центральными дифференциалами.Антуан Гудвин / CNETВообще говоря, эти дифференциалы устраняют свои различия естественным образом — гармонично соединенные планетарной передачей — но водитель может смещать систему в сторону любого из центральных дифференциалов с помощью электронного управления центральным дифференциалом, управляемым водителем (DCCD). Я подробно рассказал о трех автоматических и шести ручных настройках этой системы при оценке Subaru WRX STI 2015 года, поэтому ознакомьтесь с подробностями там.
Номинальный крутящий момент для системы DCCD составляет 41:59 с задним смещением.
Поперечно?
Это в значительной степени покрывает, с первого взгляда, как современный Subaru распределяет крутящий момент спереди назад, но как насчет разделения крутящего момента из стороны в сторону или слева направо? Как на передней, так и на задней оси вы обычно найдете стандартный дифференциал открытого типа, но рабочие модели (такие как WRX и модели 3. 6R на базе Legacy) часто будут иметь дифференциал повышенного трения на задней оси, чтобы помощь в сцеплении с дорогой при прохождении поворотов.
WRX STI также оснащен дифференциалом повышенного трения на передней оси для максимального сцепления с дорогой, а в новейших моделях WRX и WRX STI 2015 года также используется система векторизации крутящего момента на основе тормозов, которая смещает внутреннее колесо при прохождении поворотов. для улучшения передачи мощности за пределы поворота и уменьшения радиуса поворота.
Переключатель управления межосевым дифференциалом и световой индикатор — Ручной режим — Центральный дифференциал управления водителями (DCCD) (STI) — Запуск и эксплуатация — Руководство пользователя Subaru Impreza — Subaru Impreza
Переключатель управления расположен рядом с рычагом стояночного тормоза. Нажав переключатель управления вперед или потянув его назад, можно изменить начальный крутящий момент LSD.
Световые индикаторы межосевого дифференциала на комбинированном индикаторе показывают шесть уровней индикации. Световые индикаторы и контрольный переключатель связаны; когда переключатель нажимается или тянется для изменения начального крутящего момента LSD, положение подсветки индикаторов изменяется соответственно.
Нажмите переключатель вперед, чтобы увеличить начальный крутящий момент LSD; когда горит индикатор LOCK, начальная установка крутящего момента LSD является максимальной.Тогда межосевой дифференциал будет почти полностью заблокирован.
Потяните переключатель назад, чтобы уменьшить начальный крутящий момент LSD. Когда загорается самое нижнее положение контрольной лампы межосевого дифференциала водителя, начальный крутящий момент LSD будет минимальным. В этом случае только крутящий момент механического LSD будет ограничивать действие дифференциала.
Не нажимайте выключатель управления при проскальзывании колес.
Подождите, пока пробуксовка колеса не будет взята под контроль.
При любом из следующих условий после установки в ручной режим потяните переключатель управления межосевым дифференциалом, чтобы минимизировать начальный крутящий момент LSD:
При установке временной запаски
Когда ваш автомобиль буксируется
При остановке автомобиля
с выбранным ручным режимом
ПРИМЕЧАНИЕ
Более высокий начальный крутящий момент LSD дает автомобилю больше тяги при движении по прямой, но затрудняет прохождение поворотов.Помните об этом при настройке начального крутящего момента LSD.
В целом, более высокие начальные настройки крутящего момента LSD помогают при движении по скользкой дороге, а более низкие настройки — для нескользких дорог. Когда автомобиль застрял в снегу или грязи, установка максимального начального крутящего момента LSD поможет освободить автомобиль.
Настройка начального крутящего момента LSD останется, даже если выбран автоматический режим или переключатель зажигания переведен в положение OFF. Однако начальный крутящий момент LSD будет минимизирован при отключении и повторном подключении батареи.
В поворотах или поворотах (особенно при въезде в гараж) разница во вращении передних и задних колес может вызвать эффект торможения, сопровождающийся вибрацией и шумом. Это не указывает на проблему. Явление исчезнет при установке начального крутящего момента LSD на минимум.
В автоматическом режиме он автоматически регулирует начальный крутящий момент LSD. В автоматическом режиме это явление иногда возникает в зависимости от условий движения, но не указывает на проблему.
Используйте индикаторную лампу межосевого дифференциала только как приблизительную индикацию начального крутящего момента LSD.
Если вы задействуете переключатель управления межосевым дифференциалом при быстром ускорении или повороте в крутом повороте, вы можете почувствовать легкие удары. Это происходит из-за дифференциального действия межосевого дифференциала и не указывает на проблему.
См. Также:
Для США
Следующая информация была собрана в соответствии с разделом 49, часть 575 Свода федеральных правил….
Предварительная установка станции
Кнопки предварительной настройки …
Люк, если люк не может быть закрыт
Если люк не может быть закрыт с помощью переключателя люка, вы можете закрыть
люк вручную.
1. Выньте отвертку из ведра для инструмента.
2. Откройте потолочную консоль. См. Накладные расходы c …
Subaru OEM центральный дифференциал Subaru WRX 2002-2014 — Import Image Racing
Возврат
После того, как товар будет возвращен, ваш возврат и способ его получения будут зависеть от состояния товара и общего срока действия заказа.Ваш возврат будет произведен за вычетом любых комиссий, указанных представителем службы поддержки клиентов после получения номера RMA и информации о возврате. Если не указано иное, плата за отмену будет полностью возмещена.
Примечание: получение, проверка и обработка вашего возврата может занять 3-5 рабочих дней.
Как производится возврат:
Возврат будет осуществлен в зависимости от используемого метода оплаты. Import Image Racing не возмещает средства на счет, который у нас не зарегистрирован, или на другие отдельные учетные записи.
• Возврат средств с помощью кредитной карты отображается в течение 3-5 рабочих дней на стороне клиента.
• Возврат через PayPal отображается на стороне клиента в течение 1-2 рабочих дней.
• Для активации возврата с помощью подарочной карты требуется 1-2 рабочих дня.
Плата за частичный возврат и пополнение запасов:
Как указано в нашей Политике возврата, покупатель несет ответственность за все транспортные расходы при возврате. Все возвраты подлежат оплате за возврат, пожалуйста, не забудьте спросить своего представителя службы поддержки клиентов. о комиссии за возврат. За поврежденные или отсутствующие детали, не в исходном состоянии или имеющие явные признаки использования по причинам, не связанным с ошибкой Import Image Racing, взимается полная плата за возврат в размере 15%.
Возврат
Любой возврат для обмена или возмещения будет разрешен в течение 30 дней с момента получения вашего заказа и должен быть авторизован перед отправкой с номером RMA (разрешение на возврат товара). Чтобы получить инструкции по возврату и номер RMA, напишите в службу поддержки @ importimageracing.com и мы свяжемся с вами как можно скорее! Получив инструкции по возврату, отправьте товар как можно скорее и сообщите номер для отслеживания представителю службы поддержки клиентов. Заказчик несет ответственность за все транспортные расходы. Перед отправкой продукта обратно убедитесь, что вы упаковали его точно так же, как получили, и во всей оригинальной упаковке. Все предметы должны быть в новом состоянии, пригодном для перепродажи. Как только товар будет получен, он будет проверен, и вам будет предоставлен соответствующий кредит. При возврате взимается 15% комиссия за возврат. Любой возврат, полученный без RMA #, будет отклонен.
БЕЗ ВОЗВРАТА:
- Предметы, не покупаемые в IIR
- Предметы распродажи
- открытых позиций
- Б / у или установленные элементы
- Позиции специального заказа
- Незавершенные товары
- Предметы с неполной или поврежденной упаковкой
- Внутреннее устройство двигателя
- Электроника
- Колесные проставки
STI Вязкостной LSD для тяжелых условий эксплуатации
Как работает вязкостный дифференциал? В вязкостном дифференциале используется набор тонких пластин, которые расположены близко друг к другу, но не соприкасаются.Пластины поочередно имеют шлицы наполовину к одной из боковых шестерен дифференциала и наполовину к корпусу дифференциала. Пластины герметизированы внутри камеры, частично заполненной специальной вязкой жидкостью на основе силикона. Боковая и ведущая шестерни устроены аналогично открытому дифференциалу. Однако, когда между двумя осями возникает разница в скорости (во время проскальзывания колес), между пластинами будет происходить относительное движение, которому противодействует напряжение сдвига в вязкой жидкости, которое передает крутящий момент от одной противоположной пластины к другой, перенаправляя тем самым некоторый крутящий момент на оси с большей тягой.Напряжение сдвига также вызывает повышение температуры вязкой жидкости, которая расширяется. Режим «горба» возникает, когда вязкая жидкость расширяется до полного объема камеры и заставляет внутренние пластины скользить в осевом направлении до тех пор, пока они не войдут в контакт с внешними пластинами, что значительно увеличивает способность передачи крутящего момента.
Производительность системы настраивается производителем путем изменения вязкости жидкости, количества и размера пластин, а также способности заполнять жидкость. Производительность определяется скоростью передачи крутящего момента на дифференциал скорости. Например, стандартные вязкостные дифференциалы Subaru рассчитаны на 4 кгс-м / 100 об / мин. То есть дифференциал будет передавать 4 кгс-м крутящего момента на каждые 100 об / мин разницы в скорости между осями. Большинство вязкостных дифференциалов для автоспорта от STI рассчитаны на 20 кгс-м / 100 об / мин. Часто их называют единицами «20 кг» или «20 кг».
Вязкостные агрегаты исправны? Нет, это герметичные блоки без обслуживаемых частей. Вязкая жидкость запечатана внутри блока.
Упорное кольцо держит крышку моего вязкого межосевого дифференциала сломался, что это значит? Это, как правило, указывает, что устройство было переоценить в результате чего температура жидкости будет продолжать увеличиваться за счет сдвига пластины даже за режим «горб» и силы расширения было достаточно, чтобы сломать стопорное кольцо, удерживающий крышку на место. Вполне вероятно, что внутренние пластины могут быть повреждены и / или жидкость превысила свой нормальный рабочий диапазон. Блок необходимо заменить.Subaru не продает замены стопорного кольца.
Для каких областей применения лучше всего подходят вязкостные агрегаты для тяжелых условий эксплуатации? Для работы на рыхлом грунте, например, для ралли по гравию и ралли-кросса. Возможно также дрэг-рейсинг. Высокая скорость передачи крутящего момента на низкой скорости означает, что устройство будет пытаться преодолевать разницу в скорости вращения колес, возникающую при нормальном прохождении поворотов с малым радиусом. Поэтому автомобиль будет страдать недостаточной поворачиваемостью на крутых поворотах. Это не проблема для раллийных гоночных автомобилей, потому что стиль вождения можно легче регулировать, чтобы заставить машину вращаться.
Чем вязкий LSD по сравнению с Torsen® и LSD сцепления? Вязкое ограниченное скольжение — это дифференциал, определяющий скорость, и, следовательно, будет большая временная задержка для срабатывания устройства по сравнению с дифференциалом измерения крутящего момента. В автоспорте LSD с редуктором или сцеплением обычно обеспечивает превосходные характеристики с меньшими отрицательными потерями в управляемости. Для обычного уличного применения могут оказаться полезными бесшумная работа и долговечность вязкого LSD.Однако для центральных дифференциалов часто есть несколько вариантов с точки зрения ограниченного проскальзывания послепродажного обслуживания, поэтому вязкостный блок для тяжелых условий эксплуатации или заводской вязкостный блок могут быть единственными вариантами, из которых можно выбрать.
Как лучше всего обновить дифференциалы в приложениях AWD, таких как Subaru? Обычно мы предлагаем сначала модернизировать передний дифференциал, потому что это значительно поможет водителю как можно раньше включить мощность при выходе из поворота. Задний дифференциал, как правило, модернизируется вторым и обеспечивает стабильное и предсказуемое вращение, ускорение и торможение по прямой на рыхлых поверхностях / мокром асфальте или при большой выходной мощности.