Принцип работы атмосферного двигателя: что это такое, чем отличается от турбированного — Рамблер/авто

Содержание

Атмосферный двигатель: что это такое?

В списке различных характеристик двигателей всегда присутствует деление силовых агрегатов на так называемые атмосферные и моторы с наддувом. Наддувными или атмосферными могут быть как бензиновые, так и дизельные силовые агрегаты. Необходимо добавить, что современные дизельные двигатели на автомобилях практически всегда являются турбированными (турбодизель). Далее мы рассмотрим, что такое атмосферный двигатель и чем он отличается от мотора с наддувом, а также о преимуществах и недостатках атмосферных двигателей.

Рекомендуем также прочитать статью о том, что такое турбонаддув и почему ДВС данного типа намного мощнее сравнительно с простыми атмосферными аналогами при одинаковом рабочем объеме.

Содержание статьи

Принцип работы атмосферного мотора

Как известно, в основе работы любого ДВС лежит сгорание топлива в цилиндрах. Необходимо добавить, что под топливом стоит понимать не только чистый бензин для бензиновых моторов или дизтопливо (солярку) для дизельных двигателей, а топливно-воздушную смесь. Данная смесь (на примере бензинового мотора) представляет собой 1 часть бензина и около 14 частей воздуха, т.е. имеет соотношение 1:14,7. За приготовление такой смеси отвечает карбюратор или инжектор, зависимо от системы питания двигателя.

Атмосферный двигатель является таким типом мотора, который первым был создан в начале эпохи двигателестроения. Само понятие «атмосферный» основывается на том, что естественное атмосферное давление принимает непосредственное участие в том процессе, под которым следует понимать образование топливно-воздушной смеси и ее последующее сгорание в цилиндрах двигателя. Смесь основного вида топлива (зависимо от типа двигателя) и воздуха в атмосферных агрегатах образуется в результате того, что поршни мотора работают подобно насосу, затягивая наружный воздух из атмосферы через специальный воздуховод. По такому принципу работает карбюраторный мотор, бензиновый двигатель с инжектором и дизельный атмосферный агрегат. Главные отличия заключаются только в общих принципах реализации систем смесеобразования и последующей подачи в цилиндры двигателя.

Другими словами, под атмосферным двигателем стоит понимать способ поступления воздуха в карбюратор или инжектор. В атмосферных ДВС воздух, необходимый для сгорания топлива, самостоятельно всасывается двигателем из атмосферы в результате того, что в карбюраторе или инжекторе создается пониженное давление. Получается, двигатель – атмосферник конструктивно не имеет отдельных устройств, которые отвечают за подачу воздуха.

Что касается турбомоторов, главным их отличием от атмосферного агрегата является наличие механического компрессора или турбокомпрессора, а также комплексного сочетания таких решений, которые специально нагнетают воздух в двигатель под высоким давлением. В отличие от двигателя, который работает при обычном атмосферном давлении, в моторах с турбиной или компрессором среднее давление наддувочного воздуха составляет от 1.5 до 3 атмосферных давлений. Результатом становится то, что при одинаковом рабочем объеме турбомотор может сжечь больше топлива и выдает намного больше мощности сравнительно с атмосферным.

Преимущества и недостатки атмосферного двигателя

Атмосферный бензиновый двигатель сегодня является наиболее популярным и доступным по цене мотором, который устанавливается на подавляющее большинство автомобилей. Что касается дизелей, то современные моторы данного типа на легковых авто практически всегда оснащаются турбонаддувом.

Плюсы атмосферных ДВС

Главной отличительной особенностью атмосферных двигателей является относительная простота конструкции моторов данного типа. Также стоит выделить больший моторесурс атмосферных бензиновых и дизельных ДВС сравнительно с турбодвигателями. На практике средний срок эксплуатации «атмосферников» в обычных режимах (при условии качественного и своевременного обслуживания) может составлять около 400 — 500 тысяч пройденных километров до первого капитального ремонта. Для турбированных агрегатов ремонт может понадобиться уже через 200-250 тыс. километров.

Рекомендуем также прочитать статью о том, что такое форсированный двигатель. Из этой статьи вы узнаете об основных способах форсирования ДВС без установки турбонагнетатаеля.

Атмосферные двигатели проще обслуживать и эксплуатировать, так как простая конструкция данного типа двигателя менее требовательна к качеству горючего и моторного масла. Атмосферные моторы лучше переносят случайную заправку бензином или соляркой низкого качества. Также отмечается высокая ремонтопригодность атмосферных двигателей. Такие двигатели меньше нагружены сравнительно с ДВС, которые оборудованы механическими нагнетателями или турбокомпрессорами.

Упрощенная конструкция атмосферных моторов исключает необходимость дорогостоящего обслуживания и ремонта узлов, которые присутствуют в устройстве двигателей с наддувом: турбины, интеркулеры, компрессоры и т.д. Стоимость запчастей и сервисных работ для устранения тех или иных неисправностей атмосферного двигателя заметно дешевле по сравнению с ремонтом турбомоторов.

Минусы атмосферников

При всех очевидных преимуществах атмосферный мотор не лишен определенных недостатков. Такие двигатели тяжелее и больше по размерам, по мощности, показателю крутящего момента и динамике разгона атмосферные агрегаты явно проигрывают ДВС с наддувом. 

Дело в том, что схема питания атмосферника за счет самостоятельного забора наружного воздуха не позволяет обеспечить оптимальное соотношение топлива и воздуха 1:14 на всех режимах работы двигателя. Другими словами, при низких оборотах мотор засасывает меньше воздуха, а на высоких оборотах эффективному забору воздуха препятствует проходное сечение воздуховодов, сопротивление воздушного фильтра и т.д. Результатом становится то, что на «низах» атмосферник еще не тянет, а на «верхах» уже не тянет. Эффективность работы агрегата на таких режимах заметно снижается, атмосферный мотор обеспечивает наилучшую отдачу в более узком диапазоне сравнительно с турбированными ДВС.

Читайте также

Атмосферный двигатель. Определение. Плюсы и минусы.

Что такое атмосферный двигатель

Не всем владельцам авто понятно, что значит атмосферный двигатель автомобиля. Это бензиновые моторы классической конструкции, которые нагнетают воздух из окружающего пространства при помощи поршней карбюратора. При равномерном смешивании кислорода с распыленными частицами бензина образуются топливные смеси. Они используются для сжигания в камере сгорания бензинового двигателя.

Принцип действия атмосферного двигателя:

  • Всасывание воздуха из атмосферы.
  • Смешивание с бензиновыми парами в пропорции: бензин – 1 часть, кислород – 14.
  • Подача смеси в камеру сгорания.
  • Расширение объема.
  • Давление на поршень.
  • Передача вращения на коленчатый вал.

Эффект засасывания воздушных масс возникает, благодаря созданию разряженной атмосферы в полости впускного коллектора.

Принцип работы

Основной принцип любых двигателей внутреннего сгорания заключается в воспламенении топлива в специальных камерах, благодаря чему в действие приводятся поршни, а далее и последующие узлы автомобиля. В качестве воспламеняющейся жидкости зачастую выступает бензин разнообразных марок либо дизель, но под топливом также стоит понимать и смесь бензина либо дизеля с воздухом. Это является главным условием воспламенения в моторе, так как без достаточного количества кислорода этот процесс невозможен.

Наиболее оптимальным соотношением для успешного возгорания считается смесь 1:14 (воспламеняющаяся жидкость: воздух). Для решения этой проблемы в любом двигателе внутреннего сгорания предусмотрен специальный узел, отвечающий за смесь топлива и воздуха. В большинстве современных автомобилей за это дело «берутся» автоматические компрессоры подачи воздуха либо турбины (инжектор, карбюратор). Именно поэтому часто их и называют турбированными.
Но в «атмосферниках» всё проходит самотёком. Благодаря естественному атмосферному давлению воздух пытается заполнить любое свободное пространство, на основе чего и построен принцип атмосферного двигателя. Однако зачастую этого недостаточно для достижения воздушно-топливной смеси, поэтому в «атмосферниках» создана механическая система подачи воздуха. Поршни мотора выступают в качестве воздушного насоса, который затягивает необходимое количество воздуха в камеру сгорания. Для этого в атмосферных двигателях обустраивается специальный воздуховод, обеспечивающий бесперебойную подачу кислорода извне.
Знаете ли вы? Первые чертежи автомобиля принадлежат известному итальянскому художнику и учёному Леонардо да Винчи.
Таким образом, главное отличие турбированного двигателя от атмосферного заключается в автоматическом нагнетателе воздуха, которого в «атмосферниках» нет. Кроме того, не стоит забывать и о том, что в турбированных моторах воздушно-топливная смесь образуется принудительно (благодаря образованию повышенного давления от 1,5 до 3 атмосфер). 

Плюсы и минусы атмосферных двигателей

С появление силовых агрегатов, оснащенных турбокомпрессором, многие водители стали отдавать предпочтение турбированным транспортным средствам. Однако, существует немало автомобилистов, которые при вопросе, какой двигатель лучше атмосферный или турбированный, выбирают привычный классический вариант, основываясь на следующих преимуществах:

«Атмосферник» отличают следующие достоинства:

  • хороший ресурс;
  • надёжность в эксплуатации;
  • долговечность;
  • простота использования;
  • относительная простота проведения профилактических и ремонтных работ;
  • неприхотливость в отношении качества топлива.

О надёжности атмосферного двигателя красноречиво свидетельствуют цифры. Качественные моторы позволяют автомобилю проходить до 500 тыс. километров. В истории развития автомобилестроения известны случаи, когда мотор переставляли из устаревшей машины в новую, и он продолжал исправно работать на протяжении ещё многих лет.

Атмосферные двигатели внутреннего сгорания отличаются наиболее длительным пробегом. Известны случаи, когда машины с установленными атмосферниками, работают без капитального ремонта на протяжении пути, более 500 тысяч километров. Единственное условие – своевременный уход и регулярная замена моторного масла с фильтрами. Их детали и узлы устойчивы против износа. Надежный атмосферный мотор обладает повышенным моторесурсом, продолжает работать даже после неоднократных замен кузова автомобиля.

Благодаря безотказной работе атмосферного мотора и простоте его эксплуатации, он неприхотлив к качеству топлива и смазочных материалов. При регулярном использовании бензина пониженного качества такие двигатели, если и выходят из строя, быстрее восстанавливают свою работоспособность. Основное требование к моторному маслу – это обеспечение необходимого уровня. Замена смазочной жидкости должна проводиться каждые 15 – 20 000 км. При выборе наиболее подходящей марки моторного масла для атмосферного двигателя рекомендуется отдавать предпочтение синтетике или полусинтетике.

Интересно: В отличие от турбонаддувного мотора, здесь можно заливать и минеральные масла, если не получилось приобрести более качественные смазочные материалы.

Конструкция «атмосферника» такова, что с его ремонтом или профилактикой может справиться не только профессионал, но и грамотный автолюбитель. Агрегат можно разобрать до последней детали и собрать обратно — конструкция позволяет сделать это без особых затрат. Нередки случаи, когда при ремонте агрегата используются «неродные» детали и комплектующие, произведённые другими производителями. Соответственно, и стоимость ремонта такого двигателя обходится дешевле.

Атмосферные двигатели внутреннего сгорания обладают некоторыми недостатками:

  • Сравнительно большой вес механизма.
  • Пониженная мощность и развиваемый крутящий момент в сравнении с мотором, оснащенным турбиной.
  • Атмосферники не рассчитаны на работу под большими нагрузками.
  • Сложности эксплуатации на большой высоте в условиях разреженного воздуха.
  • При работе атмосферного двигателя на малых оборотах не всегда всасывается достаточное количество воздуха, что отражается на стабильности работы.

Впрочем, на этом перечень «минусов» исчерпывается. Атмосферные ДВС надёжны, просты и долговечны, но при этом не созданы для больших нагрузок и высоких оборотов.

Примеры транспортных средств с мощными атмосферными двигателями

На современном авторынке представлены автомобили с атмосферниками, выпущенные под известными брендами:

  • Mercedes C 63 FMG Coupe Edition 507.
  • Chevrolet Corvette C 7 Stingray.
  • Jeep Grand Cherokee SRT.
  • Audi RS 5.
  • Audi RS 4 Avant.
  • Chevrolet Camaro.
  • Mercedes SLK 55 AMG.
  • Porsche Cayenne GTS.
  • Infiniti QX 70.
  • Lexus LS 460.
  • Mercedes-Benz OM 602.
  • OM 612.
  • OM 647.
  • BMW моторы серии М2х, М5х, М6х, N5х.

Атмосферный двигатель работает предсказуемо, что для многих автомобилистов является несомненным преимуществом. Решить для себя, какой из вариантов подойдёт больше, стоит исходя из собственных предпочтений. Если в приоритете надёжность, лёгкость в эксплуатации и обслуживании, лучше остановить свой взгляд на моторе атмосферного типа, но если на первом месте показатели динамики, то выбор очевиден. Кстати, усилиями умельцев, практикующих тюнинг, на атмосферные двигатели также устанавливаются турбины. Сделать это непросто и требует специальных навыков, но на практике вполне применимо. Поскольку устройство не лепится к мотору наобум, предполагаются расчёты скорости и объёма поступающего воздуха. Самостоятельно такие работы лучше не выполнять, потому что успешно справиться с задачей смогут только виртуозы своего дела.

Источники: drivertip.ru, auto.rambler.ru, fastmb.ru, motoran.ru.

Атмосферный двигатель. Определение. Плюсы и минусы.

Что такое атмосферный двигатель

Не всем владельцам авто понятно, что значит атмосферный двигатель автомобиля. Это бензиновые моторы классической конструкции, которые нагнетают воздух из окружающего пространства при помощи поршней карбюратора. При равномерном смешивании кислорода с распыленными частицами бензина образуются топливные смеси. Они используются для сжигания в камере сгорания бензинового двигателя.

Принцип действия атмосферного двигателя:

  • Всасывание воздуха из атмосферы.
  • Смешивание с бензиновыми парами в пропорции: бензин – 1 часть, кислород – 14.
  • Подача смеси в камеру сгорания.
  • Расширение объема.
  • Давление на поршень.
  • Передача вращения на коленчатый вал.

Эффект засасывания воздушных масс возникает, благодаря созданию разряженной атмосферы в полости впускного коллектора.

Принцип работы

Основной принцип любых двигателей внутреннего сгорания заключается в воспламенении топлива в специальных камерах, благодаря чему в действие приводятся поршни, а далее и последующие узлы автомобиля. В качестве воспламеняющейся жидкости зачастую выступает бензин разнообразных марок либо дизель, но под топливом также стоит понимать и смесь бензина либо дизеля с воздухом. Это является главным условием воспламенения в моторе, так как без достаточного количества кислорода этот процесс невозможен.
Наиболее оптимальным соотношением для успешного возгорания считается смесь 1:14 (воспламеняющаяся жидкость: воздух). Для решения этой проблемы в любом двигателе внутреннего сгорания предусмотрен специальный узел, отвечающий за смесь топлива и воздуха. В большинстве современных автомобилей за это дело «берутся» автоматические компрессоры подачи воздуха либо турбины (инжектор, карбюратор). Именно поэтому часто их и называют турбированными.
Но в «атмосферниках» всё проходит самотёком. Благодаря естественному атмосферному давлению воздух пытается заполнить любое свободное пространство, на основе чего и построен принцип атмосферного двигателя. Однако зачастую этого недостаточно для достижения воздушно-топливной смеси, поэтому в «атмосферниках» создана механическая система подачи воздуха. Поршни мотора выступают в качестве воздушного насоса, который затягивает необходимое количество воздуха в камеру сгорания. Для этого в атмосферных двигателях обустраивается специальный воздуховод, обеспечивающий бесперебойную подачу кислорода извне.
Знаете ли вы? Первые чертежи автомобиля принадлежат известному итальянскому художнику и учёному Леонардо да Винчи.
Таким образом, главное отличие турбированного двигателя от атмосферного заключается в автоматическом нагнетателе воздуха, которого в «атмосферниках» нет. Кроме того, не стоит забывать и о том, что в турбированных моторах воздушно-топливная смесь образуется принудительно (благодаря образованию повышенного давления от 1,5 до 3 атмосфер). 

Плюсы и минусы атмосферных двигателей

С появление силовых агрегатов, оснащенных турбокомпрессором, многие водители стали отдавать предпочтение турбированным транспортным средствам. Однако, существует немало автомобилистов, которые при вопросе, какой двигатель лучше атмосферный или турбированный, выбирают привычный классический вариант, основываясь на следующих преимуществах:

«Атмосферник» отличают следующие достоинства:

  • хороший ресурс;
  • надёжность в эксплуатации;
  • долговечность;
  • простота использования;
  • относительная простота проведения профилактических и ремонтных работ;
  • неприхотливость в отношении качества топлива.

О надёжности атмосферного двигателя красноречиво свидетельствуют цифры. Качественные моторы позволяют автомобилю проходить до 500 тыс. километров. В истории развития автомобилестроения известны случаи, когда мотор переставляли из устаревшей машины в новую, и он продолжал исправно работать на протяжении ещё многих лет.

Атмосферные двигатели внутреннего сгорания отличаются наиболее длительным пробегом. Известны случаи, когда машины с установленными атмосферниками, работают без капитального ремонта на протяжении пути, более 500 тысяч километров. Единственное условие – своевременный уход и регулярная замена моторного масла с фильтрами. Их детали и узлы устойчивы против износа. Надежный атмосферный мотор обладает повышенным моторесурсом, продолжает работать даже после неоднократных замен кузова автомобиля.

Благодаря безотказной работе атмосферного мотора и простоте его эксплуатации, он неприхотлив к качеству топлива и смазочных материалов. При регулярном использовании бензина пониженного качества такие двигатели, если и выходят из строя, быстрее восстанавливают свою работоспособность. Основное требование к моторному маслу – это обеспечение необходимого уровня. Замена смазочной жидкости должна проводиться каждые 15 – 20 000 км. При выборе наиболее подходящей марки моторного масла для атмосферного двигателя рекомендуется отдавать предпочтение синтетике или полусинтетике.

Интересно: В отличие от турбонаддувного мотора, здесь можно заливать и минеральные масла, если не получилось приобрести более качественные смазочные материалы.

Конструкция «атмосферника» такова, что с его ремонтом или профилактикой может справиться не только профессионал, но и грамотный автолюбитель. Агрегат можно разобрать до последней детали и собрать обратно — конструкция позволяет сделать это без особых затрат. Нередки случаи, когда при ремонте агрегата используются «неродные» детали и комплектующие, произведённые другими производителями. Соответственно, и стоимость ремонта такого двигателя обходится дешевле.

Атмосферные двигатели внутреннего сгорания обладают некоторыми недостатками:

  • Сравнительно большой вес механизма.
  • Пониженная мощность и развиваемый крутящий момент в сравнении с мотором, оснащенным турбиной.
  • Атмосферники не рассчитаны на работу под большими нагрузками.
  • Сложности эксплуатации на большой высоте в условиях разреженного воздуха.
  • При работе атмосферного двигателя на малых оборотах не всегда всасывается достаточное количество воздуха, что отражается на стабильности работы.

Впрочем, на этом перечень «минусов» исчерпывается. Атмосферные ДВС надёжны, просты и долговечны, но при этом не созданы для больших нагрузок и высоких оборотов.

Примеры транспортных средств с мощными атмосферными двигателями

На современном авторынке представлены автомобили с атмосферниками, выпущенные под известными брендами:

  • Mercedes C 63 FMG Coupe Edition 507.
  • Chevrolet Corvette C 7 Stingray.
  • Jeep Grand Cherokee SRT.
  • Audi RS 5.
  • Audi RS 4 Avant.
  • Chevrolet Camaro.
  • Mercedes SLK 55 AMG.
  • Porsche Cayenne GTS.
  • Infiniti QX 70.
  • Lexus LS 460.
  • Mercedes-Benz OM 602.
  • OM 612.
  • OM 647.
  • BMW моторы серии М2х, М5х, М6х, N5х.

Атмосферный двигатель работает предсказуемо, что для многих автомобилистов является несомненным преимуществом. Решить для себя, какой из вариантов подойдёт больше, стоит исходя из собственных предпочтений. Если в приоритете надёжность, лёгкость в эксплуатации и обслуживании, лучше остановить свой взгляд на моторе атмосферного типа, но если на первом месте показатели динамики, то выбор очевиден. Кстати, усилиями умельцев, практикующих тюнинг, на атмосферные двигатели также устанавливаются турбины. Сделать это непросто и требует специальных навыков, но на практике вполне применимо. Поскольку устройство не лепится к мотору наобум, предполагаются расчёты скорости и объёма поступающего воздуха. Самостоятельно такие работы лучше не выполнять, потому что успешно справиться с задачей смогут только виртуозы своего дела.

Источники: drivertip.ru, auto.rambler.ru, fastmb.ru, motoran.ru.

Турбированные моторы & атмосферные: устройства и принцип работы | Справочная информация

Классические бензиновые и дизельные силовые агрегаты в последние несколько лет стали сдавать позиции лидеров в автомобилестроении. На смену им и в дополнение приходят турбированные и атмосферные двигатели, которые всего пару десятилетий назад можно было встретить только на гоночных болидах.

Сегодня очень часто при выборе современных моделей транспортных средств, автолюбители не знают, на каком силовом агрегате лучше всего остановиться — купить автомобиль с «атмосферником» или турбиной? У каждого из этих механизмов есть свои специфические особенности, а также плюсы и минусы в эксплуатации.

Устройство и принцип работы турбированного двигателя

Турбированный силовой агрегат считается одним из самых старых среди двигателей внутреннего сгорания, так как был придуман почти столетие назад. Принцип его работы заключается в том, в цилиндры подается увеличенное количество воздуха, для этого используется нагнетающее устройство – турбокомпрессор («турбина»). Это создает лучшие условия для сгорания топлива и, соответственно, увеличивает мощность двигателя.

По принципу работы турбированный двигатель не отличается от обычного атмосферного двигателя. А нагнетание дополнительного воздуха позволяет эффективнее использовать полный объем поступающей горючей смеси, что положительно сказывается на динамических характеристиках автомобиля.

Турбокомпрессор использует для работы энергию выхлопных газов. Он подсоединяется к выхлопной системе, в результате чего часть отработанных газов поступает на лопасти турбины и вращает крыльчатку компрессора.

Для охлаждения силового агрегата с турбокомпрессором используют интеркуллер. Это обычный радиатор, но вместо охлаждающей жидкости в нем циркулирует воздух.

Достоинства турбодвигателя

Главный козырь турбированных силовых агрегатов — это, конечно же, их высокая мощность. Двигатели с турбокомпрессором по динамике разгона значительно превосходят своих атмосферных «собратьев» при одинаковом объеме. При этом потребление топлива увеличивается ненамного, так как турбина использует энергию уже отработавших газов, а не тратит горючее на создание новых.

Еще одно достоинство турбированного агрегата – снижение содержания вредных газов в выхлопе, поскольку топливовоздушная смесь сгорает значительно эффективнее. Кроме того, мотор с турбокомпрессором работает менее шумно, чем «атмосферник».

Недостатки турбодвигателя

В отличие от атмосферного двигателя, турбодвигатель очень привередлив к качеству потребляемого горючего. Если не контролировать этот вопрос, то турбина очень скоро может выйти из строя. Кроме того, из-за специфики конструкции двигатели с турбонаддувом следует прогревать в любое время года.

Этот тип силовых агрегатов нуждается в особой заботе в вопросах использования смазочных материалов. Обычные минеральные и синтетические масла категорически запрещается заливать в двигатель с турбиной. Для них предназначаются специальные виды масел, которые достаточно дорого стоят. Кроме того, как отмечают специалисты автосервиса Favorit Motors, замена масла рекомендуется каждые 10 тысяч километров (при эксплуатации в городских условиях).

Устройство и принцип работы атмосферного двигателя

Система запитывания атмосферного двигателя основана на инжекторном или карбюраторном механизме. Топливовоздушная смесь формируется в строгой пропорции: 1 часть бензина + 14 частей воздуха.

Принцип работы «атмосферника» заключается в том, что топливо впрыскивается в цилиндр без сопротивления. Это стало возможным благодаря сложным и тонким настройкам в распределительном валу, который открывает впускающий клапан. После впрыска смесь сгорает, а выделившиеся газы приводят в движение поршни.

Атмосферный двигательный аппарат назван так потому, что давление воздуха при попадании в мотор, равняется одной атмосфере. В его конструкции не используются турбонагнетатели, он функционирует при стандартном атмосферном давлении.

Преимущество в использовании атмосферного двигателя заключается в том, что на каких бы оборотах он не работал в данный момент, у него всегда будет определенный запас мощности. Это позволяет максимально быстро ускоряться при любой начальной скорости движения. До максимально возможного количества оборотов атмосферный силовой агрегат «раскрутится» за считанные секунды.

Достоинства атмосферного двигателя

Рано или поздно даже самый надежный мотор может потребовать вложений и качественного ремонта. Атмосферный агрегат имеет более простое строение, чем турбированный мотор, а потому и проведение ремонтных работ обойдется дешевле.

Срок службы атмосферника гораздо выше, чем у турбированного мотора. Это обусловлено более мягкими условиями эксплуатации и отсутствием повышенных нагрузок. Поэтому рабочий ресурс атмосферного двигателя в среднем вдвое выше, чем у турбины.

В качестве приятного бонуса для автовладельцев специалисты ГК Favorit Motors могут привести следующий факт. Атмосферные агрегаты не требуют постоянно контроля смазки и менее требовательны к качеству используемых масел. В их конструкции отсутствуют устройства, которые нуждаются в дополнительной смазке. Это же касается и выбора топлива: атмосферный двигательный агрегат менее требователен к качеству горючего. Кроме того, замена смазочной жидкости производится реже — каждые 15-20 тысяч километров пробега.

И еще один плюс «атмосферника». Российские водители уже смогли убедиться, что атмосферный силовой агрегат даже зимой прогревается быстрее, чем его турбированный собрат.

Недостатки атмосферного двигателя

Самым главным минусом такого двигателя можно считать отсутствие высоких крутящих моментов. Атмосферный агрегат проигрывает турбированному в плане мощности. Такой автомобиль будет идеальным для неспешных поездок по городу, но в качестве трассового авто для молодежных гонок явно не подойдет.

Расход топлива для такого двигателя будет достаточно высок. Как отмечают специалисты ГК Favorit Motors, в среднем автомобиль с атмосферным двигателем потребляет не менее 11-12 литров горючего на 100 километров пути.

Итоги

Выбирать автомобиль с турбированным или атмосферным агрегатом стоит, исходя из своих личных предпочтений и возможностей. У каждого из этих типов моторов есть свои плюсы и минусы. Турбодвигатель будет мощнее и динамичнее, однако требователен в уходе и обходится дороже. Атмосферный двигатель не такой мощный, зато гораздо дешевле в плане эксплуатации и ремонта.

В наличии в компании Favorit Motors имеется множество разных моделей автомобилей как с атмосферными двигателями, так и с турбированными. Компетентный персонал поможет подобрать автомобиль, исходя из пожеланий и предпочтений каждого клиента.

Как турбированный, так и атмосферный силовой агрегат со временем может начать работать с перебоями или вообще отказать. Современные модели автомобилей оснащены высокотехнологичными электронными системами управления двигателем, поэтому диагностику и ремонт моторов следует выполнять только в специализированных автосервисах.

Автосервис Favorit Motors оснащен полным комплексом диагностического и ремонтного оборудования для диагностики и устранения неисправностей турбированных и атмосферных силовых агрегатов. Для обслуживания и ремонта здесь используются только качественные сертифицированные запчасти, а мастера техцентра обладают многолетним опытом работ. Все операции выполняются в соответствии с технологическими картами заводов-изготовителей, что обеспечивает высокое качество и сжатые сроки ремонта. На все детали и ремонтно-восстановительные работы предоставляется гарантия.

Специалисты компании Favorit Motors напоминают, что своевременное регламентное обслуживание способно значительно продлить срок эксплуатации силового агрегата. Необходимо регулярно менять масло в соответствии с пробегом и устранять выявленные неисправности.


Что значит Атмосферный двигатель автомобиля? Его устройство, как работает

Что такое атмосферный двигатель

Атмосферный двигатель – особый тип конструкции ДВС, который был изобретен еще в конце 19 века, на тот момент он был единственный в своем роде и не имел аналогов. Свое название мотор получил благодаря принципу работы. Основой работы для любого двигателя внутреннего сгорания (ДВС) является воспламенение топлива в цилиндрах. Не каждый знает, что без наличия кислорода невозможно сгорание горючего, поэтому под понятием топлива стоит понимать не только бензин или солярку, а и топливно-воздушную смесь – пропорция топлива и кислорода. Данный тип мотора использует воздух из окружающей среды для воспламенения смеси в цилиндрах. Так взять бензиновый двигатель: данная смесь представляет собой 1 часть бензина и примерно 14 частей воздуха. Смесь в нужных пропорциях создается карбюратором или инжектором:

  • Карбюратор — это узел системы питания ДВС, который путем смешивания, подготавливает горючую смесь наиболее оптимального состава и количества и подает ее в цилиндры самого мотора, имеет широкое распространение на разных двигателях. С 80х годов карбюраторы, из-за своей малой эффективности, массово начали вытесняться ижекторами;
  • Инжектор или форсунка так же предназначен для приготовления смеси топлива с воздухом из окружающей среды и управляется электромагнитным клапаном или механически. Инжекторные двигатели более экономичны в плане расхода топлива и дают лучшую динамику, вследствие чего карбюраторы начали отходить на задний план.

Понятие «атмосферный» подразумевает под собой то, что непосредственное участие в горении топлива в цилиндрах принимает атмосферное давление. Необходимые пропорции смеси воздуха с топливом формируются в результате работ поршней мотора, которые подобно насосу затягивают наружный воздух из атмосферы через специальный воздуховод. Такой же принцип работы происходит в карбюраторном и инжекторном двигателе, независимо от вида топлива. Автомобили с атмосферными двигателями бывают как бензиновые, так и дизельные. Не смотря на конструктивные особенности дизельных и бензиновых «атмосферников», принцип их работы несет один и тот же смысл.

СПРАВКА. Доступ воздуха, который самостоятельно всасывается двигателем для образования смеси, получается за счет образования пониженного давления в инжекторе или карбюраторе.

Преимущества

Атмосферный двигатель находит широкое распространение из-за большого количества плюсов. К основным преимуществам можно отнести следующее:

  • Большой запас ресурса. Практика показывает, что эксплуатация атмосферных двигателей, независимо от вида топлива, может измеряться сотнями тысяч километров пробега без проведения капитального ремонта. Встречаются экземпляры «атмосферников» которые при правильной эксплуатации и своевременном проведении ТО проходили до 500 тысяч километров. Любопытно, что экземпляры атмосферных моторов иногда устанавливали на другие машины, так как кузов первого автомобиля начинал гнить и приходить в негодность;
  • Простота конструкции. Атмосферные двигатели лучше поддаются ремонту, нежели моторы с турбиной. Если даже, какой либо элемент узла двигателя приходит в негодность, его можно отремонтировать за меньшую сумму, и качество ремонта в некоторых случаях не будет уступать качеству заводской сборки, механики на СТО более охотно берутся за ремонты атмосферных двигателей, нежели турбированных ;
  • Неприхотливость. Бывает, что АЗС в целях экономии разбавляют бензин, тем самым ухудшая его качественные характеристики. Атмосферный двигатель в отличие от турбированного, способен заметно легче переносить эксплуатацию на плохом бензине, двигатель простит вам разовую оплошность при заправке низким топливом.

Не смотря на ненамного больший расход топлива в атмосферном двигателе, в долгосрочном периоде он все же более рациональный и сократит ваши расходы на ремонты и обслуживания, в отличие от турбированного.

Недостатки

Не смотря на все преимущества «атмосферников» в них все же можно найти некие недостатки. Одним из недостатков является вес. По своей конструкции и принципам работы атмосферные двигатели получаются более тяжелыми и объемными, и как мы знаем, что масса автомобиля в целом влияет на средний расход топлива. По мощностям и динамике они заметно уступают двигателям с турбо надувом при одинаковых объемах. Дело в том, что система питания двигателя за счет самостоятельного набора кислорода из окружающей среды не всегда позволяет обеспечивать точные пропорции горючего с воздухом, которые должны равняться 1 к 14 на всех режимах работы. Следовательно, при более низких оборотах мотор засасывает меньше воздуха, а при высоких ему препятствует проходное сечение воздуховодов и сопротивление воздушного фильтра. Эффективность работы в целом снижается, так как во время движения не получается поддерживать узкий диапазон получения горючей смеси, по сравнению с турбированным ДВС.

ВАЖНО! Для более щадящего эксплуатирования мотора рекомендуется плавно наживать на педаль газа и не нагружать двигатель высокими оборотами. 

Особенности турбированных двигателей

Тенденция последних лет такова, что большинство автопроизводителей стремятся увеличить мощность двигателя и одновременно уменьшить его расход, переходят на выпуск машин с турбированными двигателями меньшего объема. Такие принципы позволяют производить достаточно мощные и более экологически чистые модели, однако приходится жертвовать долговечностью за счет усложненной конструкции, которая в отличии от атмосферных двигателей чаще приводит к поломкам. Первые 150 тысяч километров пробега для обладателя данного авто с турбиной, будут складываться только положительными сторонами, то тех пор пока он не начнет сталкиваться с ремонтом этого агрегата. Главным отличием мотора оснащенного турбиной является наличие механического компрессора или турбокомпрессора, который специально нагнетает воздух в двигатель под высоким давлением. В отличие от «атмосферников», в моторах с турбиной или компресоором, давление нагнетаемого воздуха составляет от 1,5 до 3 атмосфер. Турбомоторы при одинаковых объемах двигателя с атмосферными двигателями, могут сжигать больше топлива и, следовательно, выдавать намного больше мощности. Первый турбированный двигатель был разработан еще в 1905 году, однако применяться на легковых автомобилях начал только в середине 50 х годов. Принципом его работы является принудительное давление воздуха, которое создает турбина, используя отработанные выхлопные газы. Из-за высокого давления в цилиндры закачивается большее количество воздуха, чем у атмосферного двигателя, вследствие этого увеличение мощности возрастает до 10%. Лучшая динамика происходит за счет высокого крутящего момента. Турбированные моторы более экологически чистые, так как в цилиндрах идет более эффективное сгорание топлива. Не смотря на все плюсы мотора с турбиной, они имеют более сложную конструкцию и нуждаются в большем уходе во время эксплуатации. Поскольку турбина работает при высоких температурах – срок службы масла и масляного фильтра намного меньше, чем у атмосферного, и примерно сокращается два раза. Для нормальной работы двигателя, ему необходимо исключительно высокое качество бензина или солярки, заправка топливом сомнительного качества сразу даст о себе знать и опустошит ваш кошелек во время ремонта. Что касается выбора масла и масляного фильтра, то они ни в коем случае также не должны уступать по качеству.

ВНИМАНИЕ! После завершения движения, машины, оснащенные турбированным двигателем нельзя сразу глушить, автомобиль должен некоторое время поработать в холостом режиме, для нормализации давления в системе. 

Примеры моделей авто с наиболее мощными атмосферными двигателями

Современный автомобильный рынок, благодаря такому понятию как конкурентоспособность, не останавливается на достигнутом, и всегда совершенствуется, многие автомобильные компании могут похвастаться моделями с превосходной динамикой атмосферных двигателей. Среди лидеров по мощности «атмосферников» можно выделить следующие модели:

  • Автомобиль марки Mercedes C63 FMG Coupe Edition 507, на котором установлен бензиновый атмосферный двигатель силой 507 лошадиных сил;
  • Американский автомобиль Chevrolet Corvette C7 Stingray, оснащен бензиновым движком с высокими характеристиками;
  • Мощный внедорожник Jeep Grand Cherokee SRT, представляет собой комплектацию бензинового двигателя высокими мощностями и непревзойдённой динамикой;

К автомобилям не намного уступающим по мощностям так же можно отнести такие модели как: Chevrolet Camaro, Lexus LS 460, Porsche Cayenne GTS, Audi RS5, Mercedes SLK 55 AMG.

Что касается дизельных моделей, то лидерами являются следующие марки: Mercedes-Bez OM 602, OM 647, BMW M 57. Двигатели данных автомобилей показывают надежность и простоту конструкции.

При покупке автомобиля все же в первую очередь нужно обращать на его «сердце». Если вы предпочитаете хорошую динамику, меньший расход то ваш выбор должен пасть на турбо мотор. Однако если вы отдаете предпочтение долговечности, то без колебаний совести следует выбирать атмосферный двигатель.

принцип работы атмосферника, что это значит и как он устроен, основные детали и узлы

Любой автомобильный двигатель — сердце машины. Сегодня производителями изготавливаются моторы разного типа и модификаций. Все они конструктивно отличаются между собой, поэтому выбирая транспортное средство, необходимо знать, какой агрегат в нём установлен, его принцип работы, технические характеристики, преимущества и недостатки. Существуют компрессорный, турбированный и атмосферный двигатель.

Атмосферный двигатель

Классификация атмосферных моторов

Атмосферник — двигатель внутреннего сгорания, в который через фильтры поступает воздух, где он смешивается с топливом. Полученная смесь попадает в камеру сгорания, воспламеняется и приводит в движение поршни, благодаря ему поддерживается вся работа автомобиля.

Двигатели внутреннего сгорания, преобразующие энергию тепла от сгорания топлива в механическую энергию движения, делятся на три группы:

  • дизельные;
  • газовые;
  • бензиновые.

Ещё в 19 столетии был создан первый бензиновый двигатель, который за время существования претерпел много изменений. Он нашёл широкое применение в автомобилестроении наряду с дизельным агрегатом. Газовый применяется только как дополнительный элемент к бензиновому мотору.

По способу подачи топлива все атмосферные агрегаты классифицируются на 2 типа:

  • карбюраторные;
  • инжекторные.

Как устроен атмосферный двигатель

Карбюратор представляет собой узел системы питания мотора. В нём топливо смешивается с определённой частью воздуха, образуя воздушно-топливную смесь. Полученная смесь в наиболее приемлемом количестве и составе подаётся в цилиндры самого двигателя.

Инжектор или специальная форсунка — это электронно-механический узел в автомобиле, задача которого распылять топливо прямым впрыском непосредственно в цилиндр или во впускной коллектор.

Инжектор выигрывает у карбюратора по показателям эффективности. Карбюраторный агрегат потребляет больше топлива, содержание вредных веществ в выхлопе увеличивается, так как топливо сгорает менее полноценно. Управление системой требует ручной настройки.

Принцип работы

Детали атмосферного двигателя

Понятие «атмосферный» говорит о том, что при горении топлива в цилиндрах принимает участие атмосферное давление. Атмосферники громоздкие и тяжёлые, поэтому конструкторы со временем нашли способ усовершенствовать их за счёт компрессоров или турбин. Тем не менее эти двигатели по-прежнему востребованы. Они устанавливаются на авто любого класса, но чаще всего на бюджетные легковые автомобили.

Двигатель работает за счёт энергии, вырабатываемой при воспламенении смеси топлива с воздухом, профильтрованным через воздушный фильтр. Эта энергия взрыва толкает поршень вниз, заставляя коленчатый вал вращаться. Вращательные движения коленвала передаются через муфту сцепления и систему трансмиссии на вращение колёс.

Агрегат работает повторяющимися одинаковыми циклами, каждый из которых состоит из четырёх тактов:

  1. Впуск воздушно-топливной смеси.
  2. Сжатие.
  3. Воспламенение.
  4. Выпуск отработанных газов.

Во время такта впуска выпускной клапан закрыт, а впускной открыт. Смесь топлива с воздухом при этом всасывается через впускной клапан в цилиндр.

Разновидности двгателей

С завершением хода поршня вниз впускной такт заканчивается. Горючее с воздухом втягивается в цилиндр, начинает всё больше сжиматься при подъёме поршня вверх.

Когда поршень закончит свой ход вверх, через свечу зажигания проходит электрический ток, вызывая в нём искровой разряд, немедленно взрывающий горючую смесь. Энергия взрыва опускает поршень, заставляя коленчатый вал вращаться. Эта и есть та сила, которая вращает колёса.

При завершении хода поршня вниз открывается выпускной клапан. Так как поршень начинает опять идти вверх, отработанный газ выталкивается из цилиндра через выпускной клапан. Коленчатый вал приводится во вращение дважды, пока поршень проходит через все 4 такта.

Где используется атмосферный двигатель

Непрерывная работа двигателя образуется постоянным повторением этих тактов — вот что значит атмосферный двигатель.

Устройство атмосферника

Как устроен двигатель, можно рассмотреть на примере четырёхтактного атмосферного. По функциям детали мотора разделяются примерно на 4 группы:

Ремонт атмосферного двигателя

  1. Для обеспечения впуска и воспламенения топливно-воздушных смесей. К этой группе относятся головка блока цилиндров и клапанный механизм.
  2. Детали для обеспечения сжатия воздушно топливной смеси. Эта группа состоит из поршней, поршневых колец, блока цилиндра, клапана.
  3. Для передачи энергии мотора. В группе находятся шатуны, коленчатый вал, подшипники и маховики, их можно купить здесь: /uzp.net.ua/ru/podshypnyky/.
  4. Детали для выработки искровых вспышек. Группу наполняют свечи зажигания и распределители.

Взаимодействие этих деталей мотора обеспечивает главное вращение колёс.

Головка блока цилиндров

Это главная часть двигателя, расположенная непосредственно над блоком цилиндров. Она постоянно подвергается действию сгорающих газов, имеющих высокую температуру и давление. Деталь делают из листового железа или из сплава алюминия с высокопрочными и высокотемпературными добавками.

Основание головки блока цилиндра углублено, образует вместе с поршнем и цилиндром камеру сгорания. Коэффициент полезного действия двигателя сильно зависит от формы камеры сгорания, а также от расположения клапанов и свечей зажигания.

Клапаны и сопутствующие детали

Что значит атмосферный двигатель и как устроен атмосферник

Современные четырёхтактные двигатели имеют 4 клапана для каждого цилиндра: 2 впускных и 2 выпускных. Для обеспечения эффективного впуска впускной клапан имеет больший диаметр, чем выпускной. Они изготавливаются из высокотемпературного никеля или хромированной стали.

Каждый клапан имеет сопутствующие детали: седло и пружина, которая является спиральной и создаёт тесный контакт с седлом, предотвращая утечку газа. Обычно в двигателях используется одна пружина, но в некоторых видах устанавливают по 2 штуки для каждого клапана.

Когда клапан закрыт, седло находится в плотном контакте с его поверхностью, чтобы обеспечить непроницаемость камеры сгорания.

Сфера применения атмосферного двигателя

Блок цилиндров образует каркас двигателя. Совместно с поршнями блок цилиндров играет важную роль в обеспечении преодоления давления сжатия и сгорания. Для минимизации износа деталей и утечек газа внутренняя поверхность каждого цилиндра отделена под высокое давление хромированием.

Отверстие цилиндра делается круговым. Однако верхняя часть цилиндра и поршня благодаря высокому давлению и температуре страдает от износа. Позже зазор между поршневыми кольцами и цилиндром увеличивается, приводя к потерям сжатия.

Поршень мотора

Клапаны атмосферного двигателя

Деталь двигается в цилиндре вверх и вниз под действием давления, образующего взрывами топливно-воздушной смеси. При этом поршень через поршневой палец и шатун вращает коленчатый вал. Сечение поршня не является правильным кругом: диаметр в направлении поршневого пальца делается немного меньше для утечки теплового расширения.

Головка поршня становится гораздо горячее и расширяется больше, чем юбка. Для компенсации разницы в тепловом расширении диаметр поршня вверху сделан меньше, чем внизу. Кольца препятствуют утечкам под давлением сжатия смеси через зазор между цилиндром и поршнем. Обычно каждый поршень имеет 3 кольца.

Шатун агрегата

Он связывает поршень с коленчатым валом так, что вертикальное движение поршня преобразуется во вращательное движение коленвала. Поскольку шатун подвержен непрерывно действующим силам сжатия и растяжения, он должен быть довольно прочным и хорошо закреплённым, чтобы выдерживать эти нагрузки.

Коленчатый вал

Коленный вал атмосферного двигателя

Эта деталь преобразует через шатун прямолинейное движение каждого поршня во вращательное движение. Он состоит из шатунных шеек, которые передают силу поршней и валу, коленных шеек, регулирующих вращение вала и балансировочных грузов, обеспечивающих хорошее, сбалансированное вращение вала.

Коленвал вращается с большой скоростью, подвергаясь сильным нагрузкам от поршней, поэтому он должен быть довольно прочным и закреплённым, а также хорошо сбалансированным как статически, так и динамически.

Достоинства и недостатки

Многие автомобилисты до сих пор выбирают атмосферные агрегаты благодаря их преимуществам:

Виды двигателей

  • простота строения обеспечивает лёгкость в их обслуживании, возможность устранить неисправность самостоятельно и небольшие расходы;
  • простой принцип работы;
  • низкий расход масла: около 200−500 г на 10 тыс. км;
  • замена масла через 15 тыс. — 20 тыс. км;
  • хорошо справляется с низкокачественным топливом;
  • быстрый прогрев двигателя;
  • способность пройти без капитального ремонта свыше 500 тыс. км.

Из недостатков агрегата наиболее существенными по сравнению с турбированным двигателем являются:

  • выше расход топлива;
  • ниже мощность, динамичность и экологичность.

Развитие перспективных атмосферных двигателей идёт в направлении усовершенствования рабочего процесса, в увеличении степени сжатия и управлении фазами газораспределения, в применении впрыска топлива в цилиндры, уменьшении механических потерь и затрат на вспомогательное оборудование.

Что значит атмосферный двигатель | dorpex.ru

В современном автомобилестроении применяются различные виды двигателей внутреннего сгорания (ДВС). При наличии такого ассортимента силовых агрегатов, отличающихся между собой конструктивно (по количеству цилиндров, способу формирования рабочей смеси, принципу охлаждения, типу используемого топлива и прочим параметрам) неискушённому автомобилисту сложно не растеряться, выбирая транспортное средство. Эволюция ДВС, приводящих автомобиль в движение, благодаря инновациям в области автомобилестроения обеспечила возможность разгона современных авто до большой скорости при компактных габаритах агрегата.

Что значит атмосферный двигательОсобенности атмосферного двигателя.

Сегодня спектр моторов включает самые разнообразные модели, адаптированные под нужды любого потребителя. Даже далёкие от понимания «внутреннего мира» автомобиля люди знают о разделении силовых агрегатов на дизельные, бензиновые и газовые. Но классификация на этом не заканчивается, и не всегда автолюбители, глубже просвещённые в вопросах строения механизмов и систем машины, столкнувшись с понятием атмосферного двигателя, понимают, о чём в действительности речь. Поясним, что значит атмосферный двигатель, по какому принципу он работает и какие имеет плюсы и минусы.

В отличие от ДВС с наддувом, где используются устройства принудительного нагнетания воздушных масс для создания топливовоздушной смеси (компрессор, турбина, интеркулер), «атмосферник» впускает воздух за счёт пониженного давления в инжекторе или карбюраторе. То есть, воздушный поток из атмосферы забирается естественным образом, о чём собственно и говорит название. Это самый обыкновенный мотор, сконструированный более столетия назад и устанавливаемый на первые автомобили, сошедшие с конвейера. Атмосферный двигатель не утратил актуальности и сегодня, став уже классикой, им комплектуют машины не один десяток лет известные гиганты автомобилестроения.

Принцип работы атмосферного двигателя

Любой двигатель внутреннего сгорания функционирует благодаря воспламенению топлива в цилиндрах, что обеспечивается кислородом. Процесс сгорания смеси, созданной в необходимых пропорциях карбюратором или инжектором, генерирует энергию, которая приводит в движение механизмы мотора автомобиля. В случае с бензиновым мотором топливовоздушная смесь являет собой пропорцию бензина и кислорода в соотношении 1:14. Чтобы разобраться подробнее, что такое атмосферный двигатель в авто, и понять, как именно он выполняет свои функции, рассмотрим процесс подачи воздуха поэтапно. Для начала определим применяющиеся устройства подачи топливной смеси:

  1. Карбюратор. Устройство являет собой простую конструкцию, обеспечивающую процесс смешивания топлива с воздухом механически, при этом регулировка подачи предполагает тщательную настройку. Состоит карбюратор из поплавковой и воздушной камер, соединённых между собой трубкой распылителя. Посредством бензонасоса в поплавковую камеру подаётся топливо, игольчатый фильтр и поплавок обеспечивают подачу горючего. В смесительной камере имеется диффузор, распылитель и дроссельная заслонка. Движение поршней обуславливает разрежение, благодаря которому происходит всасывание воздуха и бензина, обеспечивающее функционирование мотора. Смесь поступает независимо от режима работы двигателя, в результате чего наблюдаются сильный расход горючего, а также высокий уровень выхлопа.
  2. Инжектор (форсунка). Система управления подачи топлива в данном случае более усовершенствована. Управление процессом выполняется электронной системой (микроконтроллером), которая контролирует расчёт порций топлива посредством анализа показаний с датчиков автомобиля. Подача горючего не зависит от режима работы мотора, как в случае с карбюратором, и выполняется автоматически с помощью форсунок, они в свою очередь имеют разные варианты подключения: одноточечный (моновпрыск), многоточечный (распределённый) и прямой (непосредственный впрыск). Стабильность давления обеспечивается специальным клапаном, который сбрасывает излишки топлива. Таким образом, горючее поступает в чётко дозированных объёмах, чем обусловлены экономия, уменьшенный уровень выхлопов и высокая производительность двигателя. Эти факторы способствовали большой популярности моторов, снабжённых инжекторами, и сегодня практически вытеснили с рынка карбюраторные.

Принцип работы атмосферного двигателя

Принцип работы атмосферного двигателя:

  • всасывание воздушного потока из атмосферы движущимися поршнями,
  • создание топливовоздушной смеси методом смешивания кислорода с топливом,
  • подача смеси в камеру сгорания,
  • выделение энергии за счёт воспламенения,
  • давление на поршень,
  • передача вращения на коленчатый вал.

Таким образом, транспорт приводится в движение, непрерывность которого обеспечивается стабильным давлением в цилиндрах и регулярной подачей горючего. Давление воздуха, передаваемого на двигатель, равно одной атмосфере. Под определением атмосферных моторов понимают и бензиновые, и дизельные модели, в которых при воспламенении смеси в камере сгорания присутствует атмосферное давление. Несмотря на особенности конструкций и разницу типа используемого горючего, в основу функционирования агрегатов заложен одинаковый принцип действия. Специальные устройства для нагнетания воздушных потоков отсутствуют при любом варианте атмосферного ДВС.

Преимущества и недостатки атмосферного двигателя

Современные авто комплектуются разными агрегатами, и с появлением моделей, оснащённых турбонаддувом, которые отличаются от обычного «атмосферника» высокой мощностью при малом расходе горючего и небольших объёмах, многие автопроизводители отдают предпочтение именно им. Создание экологически чистых моделей сейчас в тренде, но здесь есть свои подводные камни. Усложнение конструкции приводит к недолговечности и сложности проведения ремонтных работ, тогда как главное, чем отличается атмосферный двигатель, это надёжность. По этой причине остались и приверженцы классики. К тому же за столько лет эволюции ДВС классические варианты моторов были значительно усовершенствованы.

Преимущества атмосферного двигателя

Конструктивные отличия мотора, оснащённого турбиной в наличии турбокомпрессора или механического компрессора, нагнетающего потоки воздуха под высоким давлением (от 1,5 до 3 атмосфер). Так, турбодвигатели способны сжигать больше горючего, выдавая большую мощность и демонстрируя лучшую динамику, чем атмосферные двигатели того же объёма. При этом после 100 – 150 тысяч км. пробега радость от высокой производительности может померкнуть вследствие необходимости ремонта, который выполнить собственноручно едва ли удастся. «Атмосферник» же, отличающийся простотой конструкции, можно починить самостоятельно, не затрачивая на процедуру много денежных средств. Проще ДВС атмосферного типа и в эксплуатации. Сразу после остановки движения глушить мотор не рекомендуется, он должен поработать немного на холостом ходу с целью стабилизации давления.

Плюсы атмосферных ДВС

«Атмосферники» имеют ряд преимуществ, благодаря которым их до сих пор выбирают большинство автомобилистов:

  • высокая степень надёжности, долговечность,
  • простота конструкции, обеспечивающая лёгкость в обслуживании и небольшие затраты, а также возможность устранить неисправность своими руками,
  • низкий расход моторного масла и большой срок службы масляного фильтра (в случае с турбированным двигателем масла расходуется примерно вдвое больше),
  • неприхотливость к качеству топлива: двигатель способен отлично справляться с низкокачественным горючим, чем грешат многие автозаправки.

Минусы «атмосферников»

Двигатель атмосферного типа не лишён и недостатков, среди которых:

  • большой вес конструкции,
  • низкая мощность сравнительно с мотором того же объёма, снабжённым турбиной,
  • значения крутящего момента и разгон ниже, чем у агрегата с наддувом,
  • неспособность достичь номинальной мощности при движении автомобиля по горному рельефу, где можно наблюдать разреженный воздух.

Питание посредством естественного забора воздушного потока не даёт оптимизировать пропорции горючего и кислорода на всех режимах функционирования. То есть, на низких оборотах наблюдается неспособность забирать нужный объём кислорода, а на высоких создаётся препятствие подачи потока воздуха пропускным сечением и воздушным фильтром. Минусы не делают атмосферные двигатели менее рациональными в использовании, чем агрегаты с наддувом, поэтому они не теряют своей популярности, несмотря на выход в свет новинок в области автомобилестроения.

Недостатки атмосферного двигателя

Примеры транспортных средств с мощными атмосферными двигателями

Постоянное совершенствование характеристик автомобилей от известных лидеров автопроизводства обеспечивает востребованность экземпляров с «атмосферниками» на авторынке. Среди мощных моделей, на которых установлены движки атмосферного типа, можно выделить следующие:

  • Ferrari GTC4Lusso (одна из версий авто снабжена атмосферным6,3-литровым мотором V12 на 690 л. с. и 697 Нм крутящего момента),
  • Porsche 918 Spyder с сильным атмосферным движком 608 л. с. V8,
  • Porsche 911 GT3 RS c 4-литровым атмосфернымдвигателем 520 л. с.,
  • Mercedes C63 FMG Edition 507 с движком в 507 л. с.,
  • Chevrolet Corvette C7 Stingray («атмосферник» V8 объёмом2 литра).

Среди представителей авто с мощным атмосферным силовым агрегатом множество моделей, список которых можно продолжать. Известные бренды Феррари, Ламборджини, Порше, Мерседес, Ауди, Шевроле, БМВ и другие устанавливают на многие свои машины атмосферные движки. Модели могут быть представлены в разных вариациях и иметь как бензиновый мотор, так и дизель.

Двигатель Chevrolet Corvette C7 Stingray

Атмосферный двигатель работает предсказуемо, что для многих автомобилистов является несомненным преимуществом. Решить для себя, какой из вариантов подойдёт больше, стоит исходя из собственных предпочтений. Если в приоритете надёжность, лёгкость в эксплуатации и обслуживании, лучше остановить свой взгляд на моторе атмосферного типа, но если на первом месте показатели динамики, то выбор очевиден. Кстати, усилиями умельцев, практикующих тюнинг, на атмосферные двигатели также устанавливаются турбины. Сделать это непросто и требует специальных навыков, но на практике вполне применимо. Поскольку устройство не лепится к мотору наобум, предполагаются расчёты скорости и объёма поступающего воздуха. Самостоятельно такие работы лучше не выполнять, потому что успешно справиться с задачей смогут только виртуозы своего дела.

Двигатель Chevrolet Corvette C7 Stingray Загрузка…

Анимированные двигатели — Newcomen Atmospheric

Newcomen Atmospheric Engine

Этот великолепный двигатель был запатентован в 1705 году Томасом Ньюкоменом и является обычно считается первой «современной» паровой машиной. В отличие от более поздних паровые двигатели, Newcomen работает по принципу атмосферы .

Newcomen был впервые использован для откачки воды из шахт в Англии. Шток насоса слева соединен с приводным поршнем большим качающимся луч.

Впуск

Воду непрерывно кипятят для получения пара.Во время поршня ход вверх, этот пар низкого давления (около 5 фунтов на кв. дюйм) попадает в цилиндр. Давления недостаточно, чтобы поднять поршень на своем собственный — вес насосной штанги делает большую часть работы.

Впрыск воды

В верхней части хода паровой клапан закрыт и струя воды ненадолго включился, охлаждая пар в цилиндре.

Мощность

Холодный пар сжимается, всасывая поршень вниз. Другими словами, чем выше атмосферное давление, тем ниже поршень, следовательно, название атмосферный двигатель .В конце хода охлаждающая вода сливается из цилиндра через дополнительный канал, который здесь не показан.

Вспомогательный насос

При движении вверх вспомогательный насос заполняет охлаждающую воду. резервуар.


Двигатели

Newcomen были успешными отчасти потому, что они были очень безопасны для работать. Поскольку пар находился под таким низким давлением, риска не было. опасного взрыва котла.


Примечание о клапанном механизме

Самые ранние двигатели Newcomen имели клапаны с ручным управлением (как показано здесь).Оператор стоял на платформе возле цилиндра база и закидывала рычаги клапана на каждый ход.

Популярная легенда гласит, что мальчики, выполняющие эту утомительную задачу изобрел автоматический клапан путем навязывания тросов и рычагов для цель.

Книга Томас Ньюкомен, Предыстория пара Двигатель убедительно развеивает это представление и дает детали автоматических клапанов, разработанных Ньюкоменом и его сотрудником Джон Колли. Чтобы узнать больше о движке Newcomen, я настоятельно рекомендую этот книга.Я надеюсь когда-нибудь проиллюстрировать автоматические клапаны.

.

Двигатели

Что такое аэронавтика? | динамика полета | Самолеты | Двигатели | История полета | какой такое UEET?
Словарь | Весело и игры | Образовательные ссылки | Урок ланы | Индекс сайта | Дом

Двигатели

Как работает реактивный двигатель?


НОВИНКА!
Видео «Как работает реактивный двигатель».

Мы считаем само собой разумеющимся, насколько легко самолет весом более половины миллион фунтов отрывается от земли с такой легкостью. Как это бывает? Ответ прост. Это двигатели.

Позвольте Терезе Бенио из Исследовательского центра Гленна НАСА объяснить подробнее …

Как показано на НАСА Пункт назначения завтра.


Реактивные двигатели перемещают самолет вперед с большой силой, создаваемой огромная тяга и заставляет самолет лететь очень быстро.

Все реактивные двигатели, которые еще называют газовые турбины, работают по тому же принципу. Двигатель всасывает воздух спереди с помощью вентилятора. Компрессор повышает давление воздуха. Компрессор сделан с множеством лезвий, прикрепленных к валу. Лезвия вращаются на высокой скорости и сжимают или сжимают воздух. Сжатый затем воздух распыляется с топливом, и электрическая искра зажигает смесь. горящие газы расширяются и выбрасываются через сопло в задней части двигателя.Когда струи газа летят назад, двигатель и самолет движутся вперед. Когда горячий воздух попадает в сопло, он проходит через другую группу лопастей. называется турбина. Турбина прикреплена к тому же валу, что и компрессор. Вращение турбины вызывает вращение компрессора.

На изображении ниже показано, как воздух проходит через двигатель. Воздух проходит ядро двигателя, а также вокруг ядра.Это вызывает некоторую часть воздуха чтобы было очень жарко, а некоторым было прохладнее. Затем более холодный воздух смешивается с горячим воздух на выходе из двигателя.

Это изображение того, как воздух проходит через двигатель

Что такое тяга?

Тяга это передняя сила, которая толкает двигатель и, следовательно, самолет вперед. Сэр Исаак Ньютон обнаружил, что «каждому действию соответствует и противоположная реакция. «Двигатель использует этот принцип. Двигатель принимает в большом объеме воздуха. Воздух нагревается, сжимается и замедляется. Воздух проходит через множество вращающихся лопастей. Смешивая этот воздух со струей топлива, температура воздуха может достигать трех тысяч градусов. сила воздуха используется для вращения турбины. Наконец, когда воздух уходит, он выталкивается из двигателя назад.Это заставляет самолет двигаться вперед.

Детали реактивного двигателя

Поклонник — Вентилятор — это первый компонент в ТРДД. Большой вращающийся вентилятор всасывает большое количество воздуха. Большинство лезвий Вентиляторы изготовлены из титана. Затем он ускоряет этот воздух и разбивает его на две части. Одна часть продолжается через «ядро» или центр двигателя, где на него действуют другие компоненты двигателя.

Вторая часть «в обход» ядра двигателя. Проходит через воздуховод который окружает ядро ​​до задней части двигателя, где он производит большую часть сила, которая толкает самолет вперед. Этот более прохладный воздух помогает успокоить двигатель, а также добавление тяги к двигателю.

Компрессор — Компрессор первый компонент в ядре двигателя. Компрессор состоит из вентиляторов с множеством лопастей. и прикреплен к валу.Компрессор сжимает попадающий в него воздух в постепенно уменьшаются площади, что приводит к увеличению давления воздуха. это приводит к увеличению энергетического потенциала воздуха. Сдавленный воздух попадает в камеру сгорания.

Камера сгорания — В камере сгорания воздух перемешивается с топливом, а затем воспламеняется. Имеется до 20 форсунок для распыления топлива. воздушный поток. Смесь воздуха и топлива загорается.Это обеспечивает высокую температура, высокоэнергетический воздушный поток. Топливо горит вместе с кислородом в сжатом состоянии. воздух, производящий горячие расширяющиеся газы. Внутри камеры сгорания часто делают из керамических материалов для создания термостойкой камеры. Жара может достигать 2700 °.

Турбина — Приближается высокоэнергетический воздушный поток из камеры сгорания попадает в турбину, в результате чего лопатки турбины вращаются. Турбины связаны валом для вращения лопаток компрессора и чтобы крутить впускной вентилятор спереди.Это вращение забирает некоторую энергию из поток высокой энергии, который используется для привода вентилятора и компрессора. Газы вырабатываемые в камере сгорания движутся через турбину и вращают ее лопатки. Турбины реактивного самолета вращаются тысячи раз. Они закреплены на валах между которыми установлено несколько комплектов шарикоподшипников.

Сопло — Сопло — вытяжной канал двигатель. Это та часть двигателя, которая на самом деле создает тягу для самолет.Поток воздуха с пониженным энергопотреблением, который проходил через турбину, в дополнение к более холодный воздух, проходящий мимо сердечника двигателя, создает силу при выходе из сопло, которое толкает двигатель и, следовательно, самолет вперед. Комбинация горячего и холодного воздуха удаляется и производит выхлоп, который вызывает прямую тягу. Соплу может предшествовать смеситель , который сочетает в себе высокотемпературный воздух, поступающий из сердечника двигателя, с более низкая температура воздуха, обводимого вентилятором.Миксер помогает сделать двигатель тише.

Первый реактивный двигатель — А Краткая история первых двигателей

Сэр Исаак Ньютон в 18 веке был первым предположил, что взрыв, направленный назад, может привести в движение машину вперед с огромной скоростью. Эта теория была основана на его третьем законе движение. Когда горячий воздух проходит через сопло назад, самолет движется вперед.

Анри Жиффар построил дирижабль, который приводился в движение первым авиадвигателем, паровым двигателем мощностью три лошадиные силы. Это было очень тяжелый, слишком тяжелый, чтобы летать.

В 1874 г. Феликс де Темпл построил моноплан. который пролетел всего лишь короткий прыжок с холма с помощью угольного парового двигателя.

Отто Даймлер , в конце 1800-х изобрел первый бензиновый двигатель.

В 1894 году американец Хирам Максим пытался привести свой трехместный биплан в движение двумя угольными паровыми двигателями.Это только пролетел несколько секунд.

Первые паровые машины приводились в действие нагретым углем и обычно слишком тяжелый для полета.

Американец Samuel Langley изготовил модель самолетов которые приводились в действие паровыми двигателями. В 1896 году он успешно пилотировал беспилотный самолет с паровым двигателем, получивший название Aerodrome . Он пролетел около 1 мили, прежде чем выдохся. Затем он попытался построить полную размерный самолет Aerodrome A, с газовым двигателем.В 1903 г. разбился сразу после спуска с плавучего дома.

В 1903 году братьев Райт летал, Flyer , с бензиновым двигателем мощностью 12 л.с. двигатель.

С 1903 года, года первого полета братьев Райт, до конца 1930-х гг. газовый поршневой двигатель внутреннего сгорания с воздушным винтом. единственное средство, используемое для приведения в движение самолетов.

Это был Фрэнк Уиттл, , британский пилот, который разработал и запатентовал первый турбореактивный двигатель в 1930 году.Двигатель Уиттла впервые успешно полетел в мае 1941 года. Этот двигатель имел многоступенчатый компрессор и систему внутреннего сгорания. камера, одноступенчатая турбина и сопло.

В то время, когда Уиттл работал в Англии, Ганс фон Охайн работал над подобным дизайном в Германии. Первый самолет, который успешно использовать газотурбинный двигатель был немецкий Heinkel He 178, август 1939 года. Это был первый в мире турбореактивный двигатель. рейс.

General Electric построила первый американский реактивный двигатель для ВВС США Реактивный самолет . Опытный самолет XP-59A впервые поднялся в воздух в октябре 1942 года.

Типы реактивных двигателей

Турбореактивные

Основная идея турбореактивный двигатель просто.Воздух забирается из отверстия в передней части двигателя сжимается в 3-12 раз от исходного давления в компрессоре. Топливо добавляется в воздух и сжигается в камере сгорания до поднять температуру жидкой смеси примерно от 1100 ° F до 1300 ° F. Образующийся горячий воздух проходит через турбину, которая приводит в действие компрессор. Если турбина и компрессор эффективны, давление на выходе из турбины будет почти вдвое выше атмосферного давления, и это избыточное давление отправляется к соплу, чтобы создать высокоскоростной поток газа, который создает тягу.Существенного увеличения тяги можно добиться, если использовать форсаже. Это вторая камера сгорания, расположенная после турбины и перед сопло. Форсажная камера увеличивает температуру газа перед соплом. Результатом этого повышения температуры является повышение примерно на 40 процентов. тяги на взлете и гораздо больший процент на высоких скоростях, когда самолет в воздухе.

Турбореактивный двигатель — реактивный двигатель.В реактивном двигателе расширяющиеся газы сильно надавите на переднюю часть двигателя. Турбореактивный двигатель всасывает воздух и сжимает или сжимает его. Газы проходят через турбину и заставляют ее вращаться. Эти газы отскочите назад и выстрелите из задней части выхлопной трубы, толкая самолет вперед.

Изображение турбореактивного двигателя

Турбовинтовой

А турбовинтовой двигатель это реактивный двигатель, прикрепленный к пропеллеру.Турбина на спина поворачивается горячими газами, и это вращает вал, который приводит в движение пропеллер. Некоторые малые авиалайнеры и транспортные самолеты оснащены турбовинтовыми двигателями.

Как и турбореактивный, турбовинтовой двигатель состоит из компрессора, камеры и турбины, давление воздуха и газа используется для запуска турбины, которая затем создает мощность для привода компрессора. По сравнению с турбореактивным двигателем, турбовинтовой двигатель имеет лучшую тяговую эффективность на скоростях полета ниже примерно 500 миль в час.Современные турбовинтовые двигатели оснащены гребными винтами, которые иметь меньший диаметр, но большее количество лопастей для эффективной работы на гораздо более высоких скоростях полета. Чтобы приспособиться к более высоким скоростям полета, лопасти имеют форму ятагана со стреловидными передними кромками на концах лопастей. Двигатели с такими винтами называются пропеллеры пропеллеры .

Изображение турбовинтового двигателя

Турбовентиляторы

А турбовентиляторный двигатель имеет большой вентилятор спереди, который всасывает воздух.Большая часть воздуха обтекает двигатель снаружи, что делает его тише. и дает большую тягу на низких скоростях. Большинство современных авиалайнеров оснащены двигателями турбовентиляторными двигателями. В турбореактивном двигателе весь воздух, поступающий во впускное отверстие, проходит через газогенератор, который состоит из компрессора, камеры сгорания и турбины. В турбовентиляторном двигателе только часть поступающего воздуха попадает в камера сгорания. Остальное проходит через вентилятор или компрессор низкого давления, и выбрасывается непосредственно в виде «холодной» струи или смешивается с выхлопом газогенератора. для получения «горячей» струи.Цель такой системы байпаса — увеличить тяга без увеличения расхода топлива. Это достигается за счет увеличения общий массовый расход воздуха и снижение скорости при той же общей подаче энергии.

Изображение турбовентиляторного двигателя

Турбовалы

Это еще одна разновидность газотурбинного двигателя, который работает как турбовинтовой. система.Он не управляет пропеллером. Вместо этого он обеспечивает питание вертолета. ротор. Турбовальный двигатель спроектирован таким образом, чтобы скорость вертолета ротор не зависит от скорости вращения газогенератора. Это позволяет скорость ротора должна оставаться постоянной, даже если скорость генератора варьируется, чтобы регулировать количество производимой мощности.

Изображение турбовального двигателя

Рамджетс

г. ПВРД — это Самый простой реактивный двигатель и не имеет движущихся частей.Скорость реактивного «тарана» или нагнетает воздух в двигатель. По сути, это турбореактивный двигатель, в котором вращающийся оборудование было опущено. Его применение ограничено тем, что его степень сжатия полностью зависит от скорости движения. ПВРД не создает статического электричества. тяга и тяга вообще очень маленькая ниже скорости звука. Как следствие, ПВРД требует некоторой формы вспомогательного взлета, например другого самолета. Он использовался в основном в системах управляемых ракет.Космические аппараты используют это тип струи.

Изображение ПВРД

К началу

Что такое аэронавтика? | Динамика полета | самолеты | Двигатели | история полета | Что такое UEET?
Словарь | Весело и игры | Образовательные ссылки | Урок Планы | Индекс сайта | Дом

,

11 лучших книг для студентов, изучающих авиационную инженерию

Авиационная инженерия — это особая область науки, которая строго занимается изучением, проектированием и производством летательных аппаратов в дополнение к методам эксплуатации самолетов.

Аэрокосмические инженеры должны нести высокую ответственность за исследования, проектирование, а также производство космических аппаратов, самолетов, аэрокосмического оборудования, ракет и спутников.

Чтобы получить такие знания, очень важно получить в руки нужные книги, которые дают четкое понимание этого сложного предмета.Кроме того, опыт и стиль написания авторов имеют большое значение, чтобы решить, насколько полезна книга для студентов.

Мы подобрали несколько книг по авиационной технике, которые обязательно должны быть на вашей книжной полке, если вы стремитесь получить больше знаний в области аэронавтики.

The Development of Jet and Turbine Aero Engines by Bill Gunston Источник: Билл Ганстон / Amazon

Эта книга написана Биллом Ганстоном, бывшим пилотом Королевских ВВС и летным инструктором. На данный момент он, несомненно, является одним из лучших писателей в области авиации Великобритании.

Билл написал более 300 книг по теме, связанной с авиационной отраслью, и каждая из них оказалась успешной и оценена читателями. При написании этой книги он использовал очень простой язык, который может понять даже неспециалист.

Самое приятное в книге то, что автор строго избегал использования каких-либо сложных математических формул и все же на понятном языке объяснял техническую разницу между газотурбинными, реактивными, прямоточными, ракетными и авиационными двигателями вертолета.

Разработка реактивных и турбинных авиационных двигателей — действительно блестящая работа для студентов-авиационных инженеров.

Fundamentals of Aerodynamics By Anderson JD Источник: Андерсон-младший, Джон Д. / Амазон

Эта книга — шедевр, написанный Джоном Андерсоном в очень простом стиле, который позволяет учащимся углубиться в предмет.

Содержание книги нацелено на как физические, так и теоретические основы аэродинамики и лежащих в ее основе технологий.

В книге упоминаются конкретные задачи по отдельным темам, включенным в нее, чтобы помочь студентам очень успешно осуществить интеграцию.

Russian Piston Aero Engines by Victor Kotelnikov Источник: Виктор Котельников / Amazon

Эта книга написана Виктором Котельниковым, который по профессии историк авиации, на протяжении нескольких лет занимающийся изучением критических проблем российских авиадвигателей.

Книга представляет собой подробное исследование поршневых авиадвигателей, которые производятся на российских заводах от зарождения полета до гастролей.

Это блестящее историческое исследование, которое может быть полезно студентам авиационной инженерии.

11 Best Books for Aeronautical Engineering Students Источник: Андерсон-младший, Джон Д. / Amazon

Эта книга написана одним из успешных аэрокосмических авторов, в ней студенты узнают, как летно-технические характеристики летательных аппаратов, начиная с первых принципов, и как применять их в реальных самолетах. ,

В книге также обсуждаются философия и методы проектирования самолетов.

Андерсон прекрасно сочетает обе темы в одном тексте с этой книгой.Ему удалось уловить степень синергизма, которую трудно найти в любой книге по той же теме.

Используется разговорный язык, чтобы вызвать интерес у читателей.

Aircraft Design: A Conceptual Approach (AIAA Education Series) by Daniel Raymer Источник: Дэниел П. Реймер / Amazon

Эта книга является победителем книжной премии AIAA Summerfield Book Award, а также награды за выдающиеся достижения в области авиации и космонавтики. Это один из самых продаваемых учебников, в котором четко объясняется весь процесс концептуального проектирования самолетов.

Студенты аэронауки могут узнать о начальных размерах, анализе, компоновке конфигурации, калибровке, оптимизации, а также о торговых исследованиях. Эта книга настоятельно рекомендуется как для промышленности, так и для правительственных конструкторских групп.

Дэниел Реймер, автор книги, известный конструктор аэрокосмических аппаратов.

Mechanics and Thermodynamics of Propulsion by Philip G. Hill and Carl Peterson Источник: Филип Хилл и Карл Петерсон / Amazon

В этом учебнике авторы разделяют тот факт, что некоторых фундаментальных принципов достаточно для понимания различных режимов движения самолета и космического корабля.

Авторы также пытаются продемонстрировать тот факт, что фундаментальные принципы могут непосредственно помочь в проведении эффективных количественных оценок летно-технических характеристик самолета, а также о возможностях их улучшения.

Книга очень полезна как для студентов-механиков, так и для авиационных инженеров, поскольку они имеют глубокое понимание всех режимов.

Dynamics of Atmospheric Flight by Bernard Etkin Источник: Бернард Эткин / Amazon

Эта книга специально написана для студентов старших курсов, аспирантов, а также для практикующих инженеров.

В нем содержится информация о всестороннем рассмотрении динамики атмосферного полета, в которой основное внимание уделяется устойчивости и методам управления, применимым к самолетам.

Книга содержит достаточно числовых примеров для объяснения самолетов КВП, гиперзвуковых полетов, дозвуковых реактивных транспортных средств, увеличения устойчивости, а также градиентов ветра и плотности.

Aircraft Structures for Engineering Students by T.H.G. Megson Источник: T.H.G. Megson / Amazon

Книга охватывает все основные фундаментальные темы, такие как эластичность, летная годность, структурный анализ и аэроупругость.Студенты могут узнать, как связать технические концепции и применить их в реальном мире.

В книге представлен подробный пример проекта проектирования самолета. В нем описывается метод применения основных фундаментальных приемов.

Автор этой книги T.H.G. Мегсон — профессор кафедры гражданского строительства Университета Лидса (Великобритания).

Aeronautical Engineer Источник: Клифф Мэтьюз / Amazon

Вы можете назвать эту книгу важным руководством по обмену полезной и актуальной информацией, которая будет регулярно понадобиться студенту, а также практикующему инженеру.В книге рассматриваются все важные аспекты самолета.

Сюда входят как вертолеты, так и самолеты. Вы можете назвать это карманным справочником для инженеров, предлагающим быстрый доступ к основным авиационным инженерным данным помимо источников информации для проведения дальнейшего углубленного информационного анализа.

Aircraft Engineering Principles by Lloyd Dingle and Mike Tooley Источник: Ллойд Дингл / Amazon

Это одна из важнейших книг для студентов, получивших лицензию A&P или получившего статус инженера по техническому обслуживанию самолетов, «Принципы авиационной техники».

Книга специально написана для удовлетворения требований JAR-66 / ECAR-66, совместных авиационных требований для авиационных инженеров, которые будут работать в Европе.

Автор этой книги Ллойд Дингл — квалифицированный дипломированный авиационный инженер с более чем 25-летним практическим опытом работы в отрасли.

Он является экспертом по техническому обслуживанию самолетов, а также специализируется на гидравлических системах и конструкции самолетов.

В настоящее время он преподает в Технологическом колледже Фарнборо, Великобритания.

Aerodynamics for Engineers By Bertin JJ Источник: John J. Bertin / Amazon

Эта книга считается лучшей для студентов магистратуры по аэродинамике, авиационной инженерии, а также машиностроению. Это также определенно хорошая книга для практикующих профессионалов в области аэронавтики.

СВЯЗАННЫЕ С: 30+ ДОЛЖНЫ ПРОЧИТАТЬ ИНЖЕНЕРНЫЕ КНИГИ

В этой книге рассматриваются основные области авиационной техники, включая механику жидкости, экспериментальные методы, а также вычислительную гидродинамику, чтобы помочь студентам создать прочную основу для студентов и профессионалов в аэродинамике.

Хотя это не полный список книг, посвященных авиационной технике, он, несомненно, может дать вам фору для погружения в интересный и сложный мир авиакосмической промышленности.

.

Как работает реактивный двигатель

Вы, возможно, задавались вопросом, как работает реактивный двигатель, но отказались от мысли, что вы сможете понять ракетостроение. Но на самом деле это простая для понимания концепция, которая впечатлит человека рядом с вами во время вашего следующего полета. Итак, мы собираемся объяснить задействованные процессы, чтобы каждый мог хорошо понять основные принципы, лежащие в основе реактивных двигателей.

Реактивные двигатели, чаще используемые в самолетах, представляют собой тип газотурбинных двигателей.Теперь вы, возможно, знаете паровые турбины, в которых топливо сжигается для получения высокотемпературного парового потока, который приводит в движение турбину, а затем вращает вал, прежде чем его выбросить из системы. Вращение этого вала — это выходная мощность, и именно это вращение приводит в движение вращающийся объект. Газовая турбина похожа на те же основные принципы, однако за движение турбины отвечает сжатый газ. В реактивных двигателях высокотемпературный сжатый газ приводит во вращение компрессор спереди, но, что более важно, то, что выпускается из системы, вылетает сзади на высоких скоростях, создавая так называемую тягу.

Проще говоря, у реактивных двигателей есть сердцевина, которая разделена на три основные секции:

  • Компрессор — в передней части двигателя расположены лопасти вентилятора, некоторые вращающиеся (роторы) и некоторые статические (статоры), которые втягивают воздух в двигатель. двигатель. Здесь много рядов лопастей, и когда воздух проходит через каждый ряд, он становится более сжатым, а температура увеличивается.
  • Камера сгорания — этот сжатый воздух затем распыляется с топливом (чаще всего Jet A или Jet A-1, которые относятся к керосиновому типу), а затем электрическая искра воспламеняет топливно-воздушную смесь в камере.Это вызывает горение топливно-воздушной смеси, что значительно увеличивает давление и температуру.
  • Турбины — горячий сжатый газ всасывается из двигателя задней турбиной, которая забирает энергию из газа и вызывает падение давления и температуры. По мере того, как давление уменьшается, газ течет быстрее (подумайте о том, чтобы отпустить надутый баллон). Энергия газа, который приводит в движение заднюю турбину, приводит во вращение компрессор, который втягивает воздух спереди.

Высокоскоростные газы, выходящие через сопло в задней части, являются причиной тяги. Чтобы понять это, мы обратимся к третьему закону движения Ньютона: для каждого действия существует равное и противоположное противодействие. Когда газ устремляется из спины, вперед действует равная противоположная сила. Подумайте о том, когда вы толкаете стену бассейна, чтобы скользить в противоположном направлении; даже если сила вашего толчка направлена ​​к стене, равная и противоположная сила реакции заставляет вас двигаться в противоположном направлении.

Примерно на скорости 400 миль в час один фунт тяги равен одной лошадиной силе, но на более высоких скоростях это соотношение увеличивается, и фунт тяги превышает одну лошадиную силу. На скорости менее 400 миль в час это соотношение уменьшается. Эта сила позволяет большим самолетам, таким как 747, летать со скоростью до 600 миль в час.

Существуют также разные типы реактивных двигателей, например, турбовинтовой. Вы узнаете, турбовинтовой ли это тип, по большим выдавленным гребным винтам спереди, которые отвечают за тягу, так как большая часть энергии газа передается компрессору задними турбинами, поэтому поданный газ не несет ответственности за тяга.

Турбовальный вал используется в винтах вертолетов, силовых установках и даже в танках М1. Процесс аналогичен турбовинтовому, однако вместо привода пропеллеров вращающийся вал может приводить в действие различные устройства, такие как насосы, генераторы, колеса и вообще все, что вращается.

В современных больших самолетах используется турбореактивный двухконтурный двигатель, который похож на стандартный турбореактивный двигатель, за исключением того, что большой передний вентилятор всасывает в двигатель больше воздуха. Однако не весь воздух проходит через компрессор и турбины, при этом большая часть воздуха фактически проходит в обход сердечника и проходит по каналам снаружи сердечника (в среднем в 5 раз больше воздуха пропускается, чем фактически проходит через сердечник).Они более эффективны, особенно на дозвуковых скоростях (то есть ниже скорости звука, 768 миль в час), а также намного тише, но при этом имеют возможность разогнать транспортное средство тяжелее локомотива с 0 до 200 миль в час менее чем за 60 секунд.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *